Hemozoin is a product of heme detoxification in the gut of the most medically important species of the family Opisthorchiidae

Lvova M., Zhukova M., Kiseleva E., Mayboroda O., Hensbergen P., Kizilova E., Ogienko A., Besprozvannykh V., Sripa B., Katokhin A., Mordvinov V.

В журнале International Journal for Parasitology

Год: 2016 Том: 46 Номер: 3 Страницы: 147-156

Many species of trematodes such as Schistosoma spp., Fasciola hepatica and Echinostoma trivolvis are blood-feeding parasites. Nevertheless, there is no consensus on the feeding habits of the family Opisthorchiidae (Opisthorchis felineus, Opisthorchis viverrini and Clonorchis sinensis). Previously, histological studies of O. felineus and C. sinensis revealed some dark stained material in their gut lumen. In this study we conducted a comprehensive analysis of the gut contents of three members of the family Opisthorchiidae (O. felineus, O. viverrini and C. sinensis). Using transmission electron microscopy, we demonstrated for the first known time the presence of disintegrating blood cells in the gut of O. felineus as well as electron-dense crystals in the gut of O. felineus and C. sinensis. Electron energy loss spectroscopy revealed iron atoms in these crystals, and mass spectrometry of the purified pigment demonstrated the presence of heme. Fourier-transform infrared spectroscopy identified the signature peaks of the common iron-carboxylate bond characteristic in crystals isolated from O. felineus and C. sinensis. Scanning electron microscopy showed layered ovoid crystals of various sizes from 50 nm to 2 μm. Morphological, chemical and paramagnetic properties of these crystals were similar to those of hemozoin from Schistosoma mansoni. Crystal formation occurs on the surface of lipid droplets in O. felineus and C. sinensis guts. Our results suggest that the diet of O. felineus and C. sinensis includes blood. Detoxification of the free heme produced during the digestion proceeds via formation of insoluble crystals that contain iron and heme dimers, i.e. crystals of hemozoin. Furthermore, we believe that biocrystallisation of hemozoin takes place on the surface of the lipid droplets, similar to S. mansoni. Hemozoin was not detected in the closely related species O. viverrini.

DOI 10.1016/j.ijpara.2015.12.003