Shkryl Y.N., Veremeichik G.N., Makhazen D.S., Silantieva S.A., Mishchenko N.P., Vasileva E.A., Fedoreyev S.A., Bulgakov V.P.
В журнале Plant Cell Reports
Год: 2016 Том: 35 Номер: 9 Страницы: 1907-1916
Overexpression of both native and mutant forms of AtCPK1 in Rubia cordifolia cells increased anthraquinone production and transcript abundance of the RcIPPI, RcOSBL, RcOSBS , and RcICS genes to different extents. Calcium-dependent protein kinases (CDPKs) are involved in various cell processes and are regulated by a calcium signal system. CDPKs also function in plant defense against stress factors such as pathogens, temperature, and salinity. In this study, we compared the effect of heterologous expression of two forms of the Arabidopsis AtCPK1 gene, native and constitutively active (Ca2+-independent), on anthraquinone production in transgenic Rubia cordifolia cells. Significant qualitative and quantitative differences were found in the content of anthraquinone derivatives in control and AtCPK1-transgenic calli. Expression of the AtCPK1 gene increased anthraquinone production by 3 and 12 times for native and constitutively active forms, respectively, compared with control cells. In addition, we identified and quantified the expression of genes encoding key enzymes of the anthraquinone biosynthesis pathway, including isochorismate synthase (ICS), o-succinylbenzoate synthase (OSBS), o-succinylbenzoate ligase (OSBL), and isopentenyl diphosphate isomerase (IPPi). In all AtCPK1-transgenic cell lines, expression of ICS, OSBS, OSBL, and IPPi increased considerably at 14-15 days of subculture and decreased at the end of cultivation (30 days). The results suggest that both native and constitutively active AtCPK1 forms induced anthraquinone accumulation at the logarithmic growth stage via enhancement of expression of genes involved in the metabolism of anthraquinones or their regulatory mechanisms.