Veremeichik G.N., Shkryl Y.N., Pinkus S.A., Bulgakov V.P.
В журнале Journal of Plant Physiology
Год: 2014 Том: 171 Номер: 7 Страницы: 467-474
Agrobacterium rhizogenes genetically transform plant cells naturally via horizontal gene transfer by the introduction of T-DNA from the Ri plasmid into genomic DNA to create favorable conditions for successful colonization. An intriguing feature of pRiA4-transformed cells is their recently discovered enhanced tolerance to abiotic stress stimuli and activation of antioxidant enzyme expression. The mechanism by which A. rhizogenes modulates the defense responses of transformed cells remains unclear. It has been established that calcium-dependent protein kinase (CDPK) genes mediate crosstalk of signaling pathways in plants, and these genes have been implicated in biotic and abiotic stress signaling. In this study, we identified fourteen CDPK genes from Rubia cordifolia and examined their expression in aerial plant organs as well as in non-transformed and A. rhizogenes A4-transformed calli. Expression of RcCDPK4, RcCDPK5, RcCDPK7, and RcCDPK10 was 1.2- to 3.9-fold higher in pRiA4-transformed cells than in non-transformed cells, whereas expression of RcCDPK1, RcCDPK9, RcCDPK11, and RcCDPK14 was 1.2- to 1.9-fold lower. Agrobacterium transformation substantially modified the transcriptional responses of specific RcCDPK isoforms in pRiA4-transformed cells under conditions of temperature- and salinity-induced stress. On the basis of the results, we suggest that A. rhizogenes T-DNA genes exert their diverse biological functions by altering the expression of various CDPK genes.