SECONDARY METABOLITES FROM Pleurotus ostreatus

Jun Lei,¹ ChengWei Cui,² A. A. Gontcharov,³ Ping Chen,^{1,2*} and Qi Wang^{2*}

Pleurotus ostreatus (Jacq.: Fr.) Quel., also known as the brown-skinned lateral mushroom, is a large edible fungus of the family Pleurotaceae and genus *Pleurotus* [1] that is widely distributed in China. *Pleurotus ostreatus* has various pharmacological activities such as antitumor, antibacterial, antiviral, immunomodulatory, and as a hypoglycemic lipid [1]. Some bioactive metabolites, such as sterols, organic acids, polyphenols, and other components, have been isolated from the fruiting body of *P. ostreatus* [2, 3].

In this paper, the structures of 16 compounds were isolated and identified as ergosterol (1), α -dimorphecolic acid (2), 4-hydroxy-17*R*-methylincisterol (3), volemolide (4), diisobutyl phthalate (5), dipentyl phthalate (6), bis(2-methylheptyl) phthalate (7), 1,2-dihydroxymintlactone (8), ergost-7,9(11),22-trien-3 β ,5 α ,6 α -triol (9), bis(2-ethylhexyl)benzene-1,2-dicarboxylate (10), dibutyl phthalate (11), leptosphaerin (12), phenylalanine (13), formamide (14), (1'*R*,2'*R*,3'*S*,4'*R*)-1,2,4-triazole nucleoside (15), and pyroglutamic acid methyl ester (16) based on their ¹H NMR and ¹³C NMR spectral data. Compounds 2–16 were isolated and identified, to our knowledge for the first time, from the fruiting bodies of *P. ostreatus*.

The mushroom powder was extracted with 95% ethanol using the heating reflux method, and the solvent was recovered under reduced pressure to obtain the ethanol extract. The ethanol extract was suspended in water and extracted with petroleum ether (PE), EtOAc, and *n*-BuOH. The PE fraction was chromatographed on silica gel and eluted with PE–EtOAc $(50:1\rightarrow5:95)$ to give six major fractions (Frs. 1–6). Fraction 3 was recrystallized to give compound **1**. Fraction 4 was separated with PE–EtOAc $(10:1\rightarrow8:2)$ and purified by pre HPLC (50-100% MeOH) to give compounds **2–5**. The EtOAc fraction was chromatographed with PE–EtOAc–MeOH $(10:1:0.1\rightarrow7:3:0.1)$ to give three fractions (Frs. 1–3). Fractions 1–3 were separated by Sephadex LH-20 with CHCl₃–MeOH (1:1), respectively, and then purified by pre-HPLC (95% MeOH) to give compounds **6–11**. Using the same method, the *n*-BuOH fraction gave four fractions (Frs. 1–4; EtOAc–MeOH, $1:0\rightarrow1:1$). Fractions 1 and 2 were purified using Sephadex LH-20 and further purified using HPLC to give compounds **12** and **13**. Fractions 3 and 4 were purified using medium-pressure preparative chromatography (RP-18) with MeOH–H₂O (15:85 \rightarrow 100:0), and further purified using HPLC to obtain compounds **14–16**.

 α -Dimorphecolic acid (2), C₁₈H₃₂O₃, pale yellow oily liquid. ¹H and ¹³C NMR spectral data were similar to those published [4, 5].

4-Hydroxy-17*R***-methylincisterol (3)**, C₂₁H₃₂O₃, white needle crystals. ¹³C NMR (150 MHz, CD₃OD, δ, ppm): 173.65 (C-6), 112.62 (C-7), 173.03 (C-8), 107.07 (C-9), 36.16 (C-11), 36.45 (C-12), 49.88 (C-13), 51.71 (C-14), 22.23 (C-15), 30.14 (C-16), 56.69 (C-17), 12.07 (C-18), 41.60 (C-20), 21.53 (C-21), 136.46 (C-22), 133.81 (C-23), 44.35 (C-24), 34.35 (C-25), 20.47 (C-26), 20.10 (C-27), 18.18 (C-28) [6, 7].

Volemolide (4), C₂₂H₃₄O₃. ¹³C NMR (150 MHz, CD₃OD, δ, ppm): 172.68 (C-6), 115.27 (C-7), 171.10 (C-8), 109.52 (C-9), 35.70 (C-11), 36.28 (C-12), 49.95 (C-13), 52.04 (C-14), 22.08 (C-15), 30.12 (C-16), 56.72 (C-17), 12.24 (C-18), 41.60 (C-20), 21.50 (C-21), 136.42 (C-22), 133.85 (C-23), 44.35 (C-24), 34.35 (C-25), 20.47 (C-26), 20.11 (C-27), 18.18 (C-28), 50.51 (9-OCH₃) [8].

¹⁾ College of Life Science, Jilin Agricultural University, 130118, Changchun, P. R. China, e-mail: chenping201707@126.com; 2) Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, 130118, Changchun, P. R. China, e-mail: qiwang@jlau.edu.cn; 3) Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022, Vladivostok, Russia. Published in *Khimiya Prirodnykh Soedinenii*, No. 5, September–October, 2024, pp. 796–797. Original article submitted November 7, 2023.

Diisobutyl phthalate (5), C₁₆H₂₂O₄. ¹H NMR (600 MHz, CD₃OD, δ, ppm, J/Hz): 7.73 (2H, dd, J = 6.0, 3.6, H-3, 6), 7.63 (2H, dd, J = 6.0, 3.0, H-4, 5), 4.06 (4H, d, J = 6.6, H-8, 8'), 2.03 (2H, m, H-9, 9'), 0.99 (12H, d, J = 6.6, H-10, 10', 11, 11') [9].

Dipentyl phthalate (6), $C_{18}H_{26}O_4$, yellow powder. ¹H NMR (600 MHz, CD_3OD , δ , ppm, J/Hz): 7.73 (2H, dd, J = 5.4, 3.0, H-3, 6), 7.62 (2H, dd, J = 5.4, 3.0, H-4, 5), 4.29 (4H, t, J = 6.6, H-8, 8'), 1.73 (4H, m, H-9, 9'), 1.45 (8H, dd, J = 15.6, 7.8, H-10, 10', 11, 11'), 0.98 (6H, t, J = 7.2, H-12, 12') [10].

Bis(2-methylheptyl)phthalate (7), C₂₄H₃₈O₄, colorless oily liquid. ¹H NMR (600 MHz, CD₃OD, δ, ppm, J/Hz): 7.72 (2H, dd, J = 5.4, 3.6, H-4, 5), 7.62 (2H, dd, J = 5.4, 3.0, H-3, 6), 4.21 (4H, m, H-1', 1"), 1.68 (2H, m, H-2', 2"), 1.42 (16H, m, H-3', 3", 4', 4", 5', 5", 6', 6"), 0.96 (6H, d, J = 7.2, H-2', CH₃-2"), 0.92 (6H, m, H-7', 7") [11].

1,2-Dihydroxymintlactone (8), $C_{10}H_{14}O_4$. ESI-MS m/z 199.0 [M + H]⁺. ¹H and ¹³C NMR spectral data were similar to those published [12].

Ergost-7,9(11),22-trien-3*β*,5*α*,6*α*-triol (9), $C_{16}H_{22}O_4$. ¹H NMR (600 MHz, CD_3OD , δ, ppm, J/Hz): 5.60 (1H, d, J = 6.6, H-11), 5.26 (1H, dd, J = 15.0, 7.2, H-23), 5.20 (1H, dd, J = 15.0, 7.8, H-22), 5.09 (1H, s, H-7), 4.01 (1H, s, H-6), 3.92 (1H, m, H-3), 1.07 (3H, s, H-19), 1.03 (3H, d, J = 6.6, H-21), 0.94 (3H, d, J = 6.6, H-28), 0.86 (3H, d, J = 6.6, H-26), 0.84 (3H, d, J = 7.2, H-27), 0.58 (3H, s, H-18) [13].

Bis(2-ethylhexyl)benzene-1,2-dicarboxylate (10), C₂₄H₃₈O₄. ¹H NMR (600 MHz, CD₃OD, δ, ppm, J/Hz): 7.72 (2H, dd, J = 5.4, 3.0, H-2, 5), 7.62 (2H, dd, J = 5.4, 3.0, H-3, 4), 4.21 (4H, m, dd, J = 5.4, 1.2, H-1', 1''), 1.68 (2H, m, H-2', 2''), 1.43 (4H, m, H-7', 7''), 1.38 (4H, m, H-5', 5''), 1.33–1.37 (8H, m, H-3', 3'', 4', 4''), 0.94 (6H, t, J = 6.9, H-8', 8''), 0.91 (6H, t, J = 6.0, H-6', 6'') [14].

Dibutyl phthalate (11), C₁₆H₂₂O₄. ¹H NMR (600 MHz, CD₃OD, δ, ppm, J/Hz): 0.96 (6H, t, J = 7.5, H-11, 11'), 1.42 (4H, m, H-10, 10'), 1.69 (4H, m, H-9, 9'), 4.27 (4H, t, J = 6.6, H-8, 8'), 7.60 (2H, m, H-3, 4), 7.70 (2H, m, H-2, 5) [15].

Leptosphaerin (12), $C_8H_{11}NO_5$, needles. ¹H NMR (600 MHz, CD_3OD , δ , ppm, J/Hz): 7.56 (1H, d, J = 2.0, H-3), 5.13 (1H, dd, J = 5.3, 2.0, H-4), 3.78 (1H, dd, J = 5.2, 5.2, H-5), 3.67 (2H, d, J = 5.2, H-6), 2.16 (3H, s, OCH₂) [16].

Phenylalanine (13), $C_0H_{11}NO_2$, white powder. ESI-MS m/z 166.0 [M + H]⁺ [17].

Formamide (14), CH₃NO, white needles. ¹H NMR (600 MHz, CD₃OD, δ , ppm, J/Hz): 5.72 (1H, t, J = , H-1), 5.21, 4.68 (2H, t, J = , N-H). ¹³C NMR (150 MHz, CD₃OD, δ , ppm): 163.8 (C-1) [18].

(1'*R*,2'*R*,3'*S*,4'*R*)-1,2,4-Triazole nucleoside (15), $C_7H_{11}N_3O_4$, white powder. ¹H NMR (600 MHz, CD₃OD, δ, ppm, J/Hz): 8.40 (1H, s, H-5), 8.28 (1H, s, H-3), 6.05 (1H, d, J = 6.6, H-1'), 4.83 (1H, dd, J = 6.6, 5.4, H-2'), 4.42 (1H, dd, J = 5.4, 2.4, H-3'), 4.25 (1H, dd, J = 5.4, 2.4, H-4'), 3.96 (1H, dd, J = 12.6, 2.4, H-5'), 3.84 (1H, dd, J = 12.6, 3.0, H-5') [17]. Pyroglutamic acid methyl ester (16), $C_6H_9NO_3$. ESI-MS *m/z*144.0 [M]⁺ [19].

ACKNOWLEDGMENT

This research was supported by Jilin Provincial Science and Technology Development Project (ID: 20220402051GH) and the China Agriculture Research System (CARS-20-17).

REFERENCES

- 1. S. Y. Zang, J. C. Zhang, H. X. Wang, and C. Y. Hang, *Edible Fungi of China*, 3, 3 (2003).
- 2. C. W. Cui, C. C. Wang, R. Long, P. Chen, and Q. Wang, Sci. Technol. Food Indust., 40, 304 (2019).
- 3. M. H. Zhu, P. Chen, Q. Wang, and Y. Li, *Edible Med. Mushrooms*, 23, 242 (2016).
- 4. D. Y. Henry, F. G. Gueritte-Voegelein, P. A. Insel, N. Ferry, J. Bouguet, P. Potier, T. Sevenet, and J. Hanoune, *Eur. J. Biochem.*, **170**, 389 (1987).
- 5. J. M. Mcrae, Q. Yang, R. J. Crawford, and E. A. Palombo, J. Ethnopharmacol., 116, 554 (2008).
- H. H. Li, Y. Y. Zhou, Y. C. Chen, H. Z. Sun, H. Z. Yan, X. L. Guo, and W. M. Zhang, *Chin. Tradit. Herb Drugs*, 47, 369 (2016).
- H. Togashi, Y. Mizushina, M. Takemura, F. Sugawara, H. Koshino, Y. Esumi, J. Uzawa, H. Kumagai, A. Matsukage, S. Yoshida, and K. Sakaguchi, *Biochem. Pharmacol.*, 56, 583 (1998).
- 8. K. Kobataa, T. Wadaa, Y. Hayashiab, and H. Shibataab, *Biosci. Biotech. Biochem.*, 58, 1542 (1994).
- 9. M. X. Xiang, Y. J. Hu, and Y. J. Yan, J. Chin. Med. Mat., 35, 1610 (2012).

- 10. Spectral Database for Organic Compounds (SDBS), SDBS-3363 [DB/OL]. https://sdbs.db.aist.go.jp/sdbs/cgi-bin/landingpage?sdbsno=3363(1999).
- 11. M. J. Da, H. A. Jung, H. S. Kang, and J. S. Choi, Nat. Prod. Sci., 14, 1 (2008).
- 12. L. Y. Liu, Z. H. Li, and J. K. Liu, Chin. J. Nat. Med., 11, 71 (2013).
- 13. C. H. Wang, H. Tang, Y. Zhang, C. L. Zhuang, P. Sun, T. J. Li, and W. Zhang, Chin. J. Mar. Drugs, 35, 11 (2016).
- 14. Y. Y. Li, S. H. Xu, and Y. Zhao, J. Yunnan Norm. Univ., 38, 65 (2018).
- 15. L. L. Shi, D. Zhao, G. X. Ma, J. S. Yang, S. Gulina, and J. Zhang, *Chin. Tradit. Herb. Med. Drugs*, 48, 58 (2017).
- 16. J. D. White, R. A. Badger, H. S. Kezar, A. J. Pallenbeg, and G. A. Schiehser, *Tetrahedron*, 45, 6631 (1989).
- 17. https://sdbs.db.aist.go.jp/sdbs/cgi-bin/landingpage?sdbsno=931(1999).
- 18. H. L. Ge and J. G. Dai, Chin. J. Chin. Mater. Med., 35, 3151 (2010).
- 19. H. Chen, N. N. Gu, Z. Y. Hao, Y. J. Shun, Y. L. Zhang, and W. S. Feng, J. Chin. Med. Mater., 40, 1345 (2017).