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Abstract
Purpose Knowledge of haploporid trematode larvae is very poor. Until recently, only scattered reports from the Black and 
Medditeranean Seas were known. The present research is the first report of haploporid cercariae S. cephali from the gastro-
pod Hydrobia acuta inhabiting the Black Sea. Thus, the present study aimed to investigate the larvae of one species from 
the Haploporidae family.
Methods Hydrobia acuta molluscs were collected in the estuary of the Chernaya River (the Black Sea) during 2011–2013 
and examined for trematode larvae. Found parthenitae were drawn and preserved for DNA extractions. Morphological fea-
tures were compared to nominal species, and molecular comparisons were made of the subunit ribosomal DNA with other 
Haploporidae species.
Results The haploporid parthenitae were found in the gonads of Hydrobia acuta molluscs. Most of the morphological 
characteristics of the specimens investigated agree with those of Saccococoelium sp. and are closest to those of S. cephali 
by shape and length of the body, ratio of suckers, ratio of tail length to body, shape, and size of the pharynx. Phylogenetic 
analysis from our study generated with Bayesian algorithm showed that studied cercariae specimens from the Black Sea 
were within the hapolporine clade and closely related to S. cephali from Spain.
Conclusion Morphological characteristics of cercariae emerging from Hydrobia acuta from the Black Sea and the analysis 
of partial 28S rDNA sequences support the conspecificity of the parasite with S. cephali mature worms from the Mediter-
ranean Sea.
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Introduction

Haploporidae is a family of the suborder Haploporata Pérez-
Ponce de León & Hernández Mena, 2019 (Digenea), which 
includes eight subfamilies of marine or brackish-water mul-
let fishes of the Atlantic, Indo-West Pacific, and Mediter-
ranean Regions. Of these, only adult worms of four genera 

of Haploporinae Nicoll, 1914, including members of Sac-
cocoelium, Haploporus, Dicrogaster, and Lecithobotrys, 
were registered from the Black Sea [25, 35, 44], as well 
as in the Mediterranean Sea [17, 18]. On this background, 
fauna haploporine trematodes and their life cycles are well 
studied in the Mediterranean Sea. Particularly, the species 
Sacccocoelium obesum Looss, 1902, S. tensum Looss, 1902, 
and Haploporus benedeni (Stossich, 1887) Looss, 1902 have 
been shown to realise their life cycles through gastropods 
from either the family Rissoidae Gray, 1847 or Hydrobiidae 
W. Stimpson, 1865 as first intermediate hosts, and Mugili-
dae Jarocki, 1822 fish species as definitive hosts [27]. In the 
Black Sea, the life cycles of haploporid trematodes as well 
as species diversity are still poorly studied. The only report 
on two morphologically similar haploporid cercariae from 
gastropods Iravadia quadrasi (O. Boettger, 1893) (= Rissoa 
venusta) and Ecrobia ventrosa (Montagu, 1803) is available 
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[43]. This is largely due to the fact that most of the previ-
ous studies have been focused on the parasites of marine 
fishes [28, 35]. In a whole, the life cycles described for few 
species of Haploporidae at present [27, 41, 42]. Moreover, 
some haploporid species from the Mediterranean Sea, for 
instance, members of the genus Saccocoelium, were revised 
based on morphological data [17]. This creates difficulties 
in making an accurate species identification and studies of 
their life cycles.

In this study, the first complex data, including morpho-
logical descriptions and molecular characteristics of larvae 
of Saccocoelim cephali Blasco-Costa, Montero, Gibson, 
Balbuena, Raga & Kostadinova, 2009 from gastropod mol-
luscs Hydrobia acuta (Draparnaud, 1805) in the Black Sea 
are presented.

Materials and Methods

Sample Collection

A total of 5188 specimens of H. acuta were collected in 
the estuary of the Chernaya River (44°27′49′′ N, 33°51′37′′ 
E) (Sevastopol City, the Black Sea) during 2011–2013. All 
snails were examined for helminthic infections using stand-
ard methods [21]. Parthenitae of trematodes were studied 
as alive asstained using an Olympus CX41 microscope 
equipped with an CX50 camera with software Infinity Ana-
lyze 1 (Canada). Trematodes were fixed under a cover glass 
with slight pressure, stained with acetocarmine. The col-
our grade was differentiated by “iron water”  (H2O +  Fe2O3) 
and acidified alcohol (70% ethanol + 3% HCl). After dehy-
dration in ethanol of increased concentrations (70, 80, 90, 
and 100%) and clarification in clove oil, trematodes were 
mounted in Canada balsam [40].

Morphological Data

All measurements were made on stained parasites. The 
abbreviations of metric features included in Table 1 are 
according to [17]. The excretory system of the larvae was 
investigated on living individuals when the larvae were 
stained with neutral red, as a result of which the flickering 
of the flame cells was observed. Drawings were made using 
the drawing software Inkscape 0.48.2.-1 (Scalable Vector 
Graphics, 2011).

Scanning Electron Microscopy

Live sporocysts and spontaneously emitting cercariae were 
fixed in 2.5% (v/v) glutaraldehyde buffered with 0.1 M 
Sorensen phosphate for 24 h at 5 °C. After samples were 
dehydrated through an ethanol series (70–96 °C). Dried in 

Leica EM CPD 300 critical point dryer using liquid carbon 
dioxide as a transitional medium. After drying, they were 
mounted on aluminium stubs and coated with gold in an 
ion-sputtering apparatus (Leica EM ACE 200).

Statistical Methods

After the parasites were identified, we assessed the infection 
indexes in the Hydrobia acuta, including invasion intensive-
ness (prevalence) (IE), invasion intensity (II), and abun-
dance index (AI) [20]. For each morphological parameter, 
the mean with standard error (mean ± SE) was calculated. 
Statistical parameters were calculated with the Statistica 6 
software package for Windows (Statsoft).

DNA Extraction, Amplification and Sequencing

Two haploporid cercariae specimens fixed by 96% ethanol 
were used for molecular analysis (Table S1). Total DNA 
was extracted using QIAamp DNA Micro Kit (Qiagen, 
Germany). A worm was incubated in 180 μl of Genomic 
Digestion buffer with 20 μl of Proteinase K at 55 °C for one 
hour with the following mix by vortex for 20 s. DNA extrac-
tion was carried out according to the manufacturer’s proto-
col. The elution volume was 25 μl. The DNA was stored at 
− 20 °C. Fragment of 28S ribosomal DNA (rDNA) 1200 
base pairs (bp) in length was amplified by a polymerase 
chain reaction (PCR) method using the 2 × GoTaq Green 
Master mix (Promega, Madison, Wisconsin, USA) and the 
primers 28S-A (5′-TCG ATT CGA GCG TGA WTA CCC 
GC-3′) [34] and 1500R (5′-GCT ATC CTG AGG GAA 
ACT TCG-3′) [45] with an annealing temperature of 55 °C. 
Negative and positive controls using both primer pairs were 
included. PCR parameters began with a 1 min denaturation 
at 98 ºC, followed by 35 cycles of 10 s at 98 ºC, 5 s at 55 ºC 
and 2 min 30 s at 72 ºC, and concluded with a 7 min exten-
sion at 72 ºC.

PCR products were directly sequenced using an ABI Big 
Dye Terminator v.3.1 Cycle Sequencing Kit (Applied Bio-
systems, Waltham, Massachusetts, USA) as recommended 
by the manufacturer. The internal sequencing primers for 
28S rDNA are described in [45]. PCR product sequences 
were analysed using an ABI 3500 genetic analyser at the 
FSC of Biodiversity FEB RAS. Sequences were submit-
ted to the GenBank database under accession numbers 
PQ131205-PQ131206.

Alignments and Phylogenetic Analysis

Ribosomal DNA sequences were assembled using the 
SeqScape v. 2.6 software provided by Applied Biosys-
tems Company. Alignments, estimations of the number of 
variable sites, and sequence differences through p-distance 
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calculation were performed using the MEGA 7.1 software 
[33].

Phylogenetic analysis was performed with Bayesian 
Inference (BI) using the MrBayes 3.2.6 program [39] for 
subfamily Haploporinae and for overall Haploporidae. The 
best nucleotide substitution model, the TVM + I + G [37], 
was estimated with jModeltest v. 2.1.5 software [24] using 
the BIC criterion [39] for both datasets.

The Monte Carlo Markov chain algorithm was performed 
with 10,000,000 generations during two independent runs, 
sampling each 1000 generation and burnin the first 25% of 
all generations. The significance of phylogenetic relation-
ships was estimated with posterior probabilities; positive 
values ranged from 0.9 to 1.0 [29]. The average standard 
deviation of split frequencies after MCMC was 0.001660, 
which was enough to stop the algorithm and summarise the 
sampled parameter values and trees [29].

The sequences of 28S rDNA of all members of Haplopor-
idae, available in GenBank, were incorporated into phyloge-
netic analysis [1–16, 18, 19, 22, 23, 30, 37, 38] (Table S1). 
The 28S rDNA sequences of Brachycladium goliath (van 

Beneden, 1858) Fraija-Fernández, Aznar, Raga, Gibson and 
Fernández, 2014 and Hurleytrematoides chaetodonti (Man-
ter, 1942) Yamaguti, 1954 from GenBank were used as the 
outgroup [6, 19] (Table S1).

Results

Saccocoelium cephali Blasco-Costa, Montero, Gibson, Bal-
buena, Raga & Kostadinova, 2009.

Host:Hydrobia acuta (Draparnaud, 1805).
Locality: the Black Sea, near Sevastopol City (44°27′49′′ 

N, 33°51′37′′ E).
Site: gonads.
Intensity of infection IE = 1%, II = 1–30.

Description

Sporocyst long, 238–356 (302 ± 24) × 73 – 133 (95 ± 11) µm, 
fill gonads of their host.

Table 1  Comparing morphological features of haploporid cercariae in the Black Sea and Mediterranean Seas (in µm)

Features Saccocoelium cephali,
Present study

Saccocoelium tensum, Fares, 
Maillard, 1974

Saccocoelium obesum,Fares, 
Maillard, 1974

Haploporus benedeni, 
Fares, Maillard, 1974

BL 315–514 (404 ± 41) 210 500 350
BW 162–249 (205 ± 21) 120 220 240
OSL 51–69 (60 ± 3) 53 90 100
OSW 84–94 (88 ± 2) 90
VSL 57–68 (63 ± 3) 50 80
VSW 63–83 (73 ± 6)
PL 12–69 (37 ± 10) 30
PHL 35–48 (42 ± 2) 29 70 50
PHW 38–57 (48 ± 4) 25 60 60
OL 74–131 (106 ± 17)
Tail length 139–260 (200 ± 61) 330 380
FO 186 – 370 (244 ± 32)
CEND 109–174 (132 ± 15)
OSL/BL 0,2 0,25
VSL/BL 0,2 0,2
PL/BL 0,1
PHL/BL 0,1 0,1
OL/BL 0,3
FO/BL 0,6
TEND/BL
CEND/BL 0,3
0SW/BW 0,4
VSW/BW 0,4
PHW/BW 0,2 0,2
TW/BW
OSL/VSL 1.05 1.06 1
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Cercariae (Based on 10 specimens, Table 1, Figs. 1 
and 2).

Body oval. Tegument without spines. Oral sucker sub-
terminal, almost the same size as ventral sucker. Ventral 
sucker in middle of body. Two global eye spots behind 
oral sucker. Oral to ventral sucker distance (493 ± 54) 
slightly less than ventral sucker to end of body distance 
(651 ± 114). Prepharynx present. Pharynx round, mus-
cular, well defined. Oesophagus long. Intestinal bifurca-
tion slightly posterior to ventral sucker in two sacciform 
branches. Two digestive branches reach the posterior 
1/3 of body. Excretory bladder Y-shaped, both branches 
approach level of ventral sucker. Stenostome excretory 
system. Formula of excretory system is 2 [(2 + 2 + 2) + (
2 + 2 + 2)] = 24.Tail slender, unadorned, almost twice as 
short as body length.

Adolescaria

The process of encystation of 1 cercaria in same mol-
lusc was observed (adolescaria). Cyst oval, elongate, 
180 × 116 µm (Figure S1).

Table 2  Interspecific genetic 
p-distance values (%, below 
diagonal) and standard 
errors (above diagonal) for 
Haploporinae

1 2 3 4 5 6 7 8 9 10

1 Cercaria ex H. acuta #1 0 0.093 0.621 0.632 0.508 0.828 0.832 0.884 0.791
2 Cercaria ex H. acuta #2 0 0.093 0.621 0.632 0.508 0.828 0.832 0.884 0.791
3 Saccocoeliumcephali 0.098 0.098 0.61 0.62 0.495 0.817 0.823 0.872 0.783
4 Saccocoeliumobesum 4.617 4.617 4.519 0.293 0.558 0.764 0.798 0.878 0.777
5 Saccocoeliumbrayi 4.813 4.813 4.715 0.884 0.593 0.777 0.84 0.88 0.799
6 Saccocoeliumtensum 2.75 2.75 2.652 3.733 4.126 0.72 0.797 0.829 0.761
7 Dicrogastercontracta 6.883 6.883 6.785 6.293 6.686 5.801 0.606 0.809 0.823
8 Dicrogasterperpusilla 8.358 8.358 8.26 8.063 8.456 7.473 4.523 0.881 0.863
9 Haploporusbenedeni 8.644 8.644 8.546 8.35 8.743 7.859 6.785 8.063 0.844
10 Litosaccusbrisbanensis 7.389 7.389 7.291 7.685 8.374 6.7 7.594 9.172 8.473

Fig. 1  Alive Saccocoelium cephali cercaria from the mollusc Hydro-
bia acuta: A. The morphology of the cercaria body. B. Alive Sacco-
coelium cephali adolescaria Scale: 200 µm

Fig. 2  SEM photomicrographs of Saccocoelium cephali cercariae 
from mollusc Hydrobia acuta: A- body surface structure, ratio of 
suckers, OS oral sucker, VS ventral sucker. B—view of body C –ven-
tral sucker surface structure. D–oral sucker surface structure
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Molecular Data

The alignment consisted of 1022 bp for the 28S rRNA gene 
of two investigated haploporid cercariae specimens collected 
from H. acuta from the Black Sea basin. The nucleotide 
composition of the 28S rDNA fragment was 25.6% for T(U), 
21.9% for C, 21.0% for A, and 31.5% for G bases, which was 
typical for Saccocoelium species. Two 1022 bp 28S rDNA 
sequences from this study were highly similar to those for 
S. cephali ex Mugil cephalus from Spain (FJ211233). These 
sequences differ from each other with a single T/C transition. 
However, we cannot identify if this mutation is fixed because 
a single sequence of adult S. cephalic is available. Genetic 
p-distances between our specimens and S. cephali were 
0.098 ± 0.093%, whereas between our samples and other 
Saccocoelium species ranged from 2.75 ± 0.5 (S. tensum) to 
4.8 ± 0.6% (S. brayi), demonstrating typical interspecific dif-
ferentiation level for Haploporidae by 28S rDNA sequence 
data (Table 2).

Phylogenetic analysis from our study generated with 
Bayesian algorithm showed that studied cercariae specimens 
ex H. acuta from the Black Sea, were within the haploporine 
clade and closely related to S. cephali from Spain on both 
only Haploporinae and overall Haploporidae phylogenetic 
trees (Fig. S2).

Discussion

Adult worms of S. cephali were first described by Isabel 
Blasco-Costa with co-authors in 2009 [17] from the Medi-
terranean Sea (Spain). The Black Sea cercariae and meta-
cercariae of S. cephali trematodes have not been described 
before.

In the Black Sea, parthenithae of haploporid trematodes 
were first noted by Sinitzin [43]. The author reported two 
morphologically similar haploporid cercariae: Cercaria met-
entera (Sinitzin, 1911) from gastropod Iravadia quadrasi 
(O. Boettger, 1893) (= Rissoa venusta) and C. mesentera 
(Sinitzin, 1911) from mollusc Ecrobia ventrosa (Montagu, 
1803) (= Hydrobia ventrosa) in the water off Sevastopol 
City. According to Sinitzin [43], C. mesentera differs from 
C. metentera in the sizes of the body, oesophagus, caeca, 
excretory bladder form, and absence of the prepharynx. 
Afterwards, the trematode fauna of molluscs in the Black 
Sea was widely studied by Dolgikh [26]. The author reported 
one type of haploporid parthenitae, C. metentera, from the 
mollusc Rissoa splendida (Eichwald, 1830), and discussed 
their biology and the identity of the adult form, suggesting 
that it is a species of Saccocoelium tensum Looss, 1902.

Based on morphological data, our samples belong to the 
family Haploporidae. Most of the morphological charac-
teristics of the specimens investigated agree with those of 

Saccococoelium sp. and closest to S. cephali by shape and 
length of the body, ratio of suckers, ratio of tail length to 
body, shape and size of pharynx. The samples of S. cephali 
we found differ from all other species of Saccocoelium in 
their distinctly bigger size (size of body and other organs see 
in Table 1). Thus, morphological data supports the identifi-
cation of haploporid cercariae from mollusc H. acuta in the 
Black Sea as S. cephali.

The body surface, suckers, and tail structure are described 
in present SEM research. But they were not reported for 
Saccocoelium trematode larvae until now. Thus, the new 
characters are provided in this article. The entire surface 
of the cercaria was not armed with spines. On the figures, 
some authors illustrated the armed protein coagulation on 
the body surface of Saccocoelium cercaria from the Mediter-
ranean [27] and the Azov Seas [31]. Our SEM study reflects 
the absence of the formations on the body surface (Fig. 2).

Based on the molecular data, cercariae ex H. acuta from 
our study belong to the species S. cephali unambiguously, 
despite the single substitution between the 28S rDNA 
sequences of our specimens and the individual of S. cephali 
from the Ebro Delta, Spain (FJ211233). We do not exclude 
that this substitution will be characterised as the fixed muta-
tion after additional 28S rDNA sequence data of adult S. 
cephali will be available. In any case, our taxonomical 
conclusion about cercariae we found in the Black Sea will 
stand firm. Besides, fixed mutations in 28S rDNA sequences 
within the same species are known for Haploporidae [7, 14].

In the life cycle of haploporid trematodes, marine gas-
tropods of the families Hydrobiidae and Rissoidae serve as 
the first intermediate hosts [27] and mullet fish as definitive 
hosts [25, 35].

Thus, we can expect that S. cephali trematode realises the 
life cycle in the Black Sea, using the mollusc H. acuta as the 
first intermediate host and the mullets as the most probably 
definitive host.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11686- 024- 00934-8.
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