УДК 577.1;575.1

ВЗАИМОДЕЙСТВИЕ ТРАНСКРИПТОВ ТЕЛОМЕРНОГО РЕТРОЭЛЕМЕНТА *HeT-A* И КОДИРУЕМОГО ИМ БЕЛКА Gag В РАННЕМ РАЗВИТИИ Drosophila

© 2016 И.А. Оловников, В.В. Моргунова, А.А. Миронова, М.Ю. Кордюкова, Е.И. Радион, О.М. Оленкина, Н.В. Акуленко, А.И. Калмыкова*

Институт молекулярной генетики РАН, 123182 Москва; электронная почта: allakalm@img.ras.ru

Поступила в редакцию 30.06.16 После доработки 04.07.16

Теломера представляет собой нуклеопротеиновый комплекс на концах линейных хромосом, который защищает их от слияния и деградации. В состав теломеры входят теломерная ДНК, защитный белковый комплекс и теломерная PHK. Биогенез теломерных транскриптов в процессе развития пока далек от понимания. Теломеры *Drosophila* удлиняются с помощью транспозиций специализированных теломерных ретротранспозонов, кодирующих белки. С помощью конструкций, кодирующих маркированный теломерный белок, мы показали, что транскрипты теломерного элемента *HeT-A* взаимодействуют с кодируемым ими белком Gag-HeT-A. Материнские транскрипты *HeT-A* в комплексе с белком Gag-HeT-A формируют рибонуклеопротеиновые гранулы вокруг центросом, центров организации микротрубочек, на этапе формирования бластодермы при нарушении сайленсинга теломерных повторов во время оогенеза. Специфичная локализация PHK *HeT-A* достигается с помощью транспорта по микротрубочкам, т.к. в условиях разрушения микротрубочек эта локализация нарушается. Апробированная в работе трансгенная система является перспективной моделью для изучения биогенеза теломерной PHK.

КЛЮЧЕВЫЕ СЛОВА: теломера, развитие, ретротранспозон HeT-A, Drosophila, теломерная PHK.

Теломеры представляют собой комплекс нуклеиновых кислот и белков, защищающих концы линейных хромосом эукариот. В состав теломер входят теломерная ДНК и связанные с ней белки, а также недавно обнаруженная теломерная РНК, считываемая с теломерных повторов. Транскрипция теломерных повторов является консервативным свойством многих организмов, однако ее роль до конца не выяснена. У млекопитающих теломерные повторы, образуемые теломеразой, транскрибируются с образованием теломерных PHK, TERRA (telomeric repeat-containing RNA), играющих важную структурную роль в формировании теломерного хроматина [1]. Основные данные о биогенезе TERRA получены in vitro или на культурах опухолевых клеток, в которых наблюдается высокое содержание TERRA. Согласно современным данным, уровень транскрипции TERRA напрямую связан с состоянием теломерного комплекса, а сами теломерные транскрипты могут связывать теломерные белки, теломеразу и компоненты, участвующие в репликации [1]. В ооцитах человека также выявлены TERRA [2], что указывает на то, что теломерные PHK играют консервативную роль в процессе оогенеза и раннего развития.

Особенностью теломерных повторов Drosophila является то, что они представлены ретротранспозонами типа LINE (long interspersed nuclear element), HeT-A, TART и TAHRE, основным из которых является HeT-A [3]. Комплекс теломерных белков дрозофилы, являющийся функциональным аналогом шелтерина, защищает концы хромосом дрозофилы от деградации и слияния [4]. Теломерный транскриптом Drosophila состоит как из длинных транскриптов, соответствующих смысловой и антисмысловой цепям теломерных повторов, так и из коротких PHK, образуемых системой PHK-интерференции (PHKи) [5, 6].

Принятые сокращения: TERRA – теломерные PHK, содержащие повторы (telomeric repeat-containing RNA); PHKи – PHK-интерференция; piPHK – piRNA (Piwi interacting RNA); PHП – рибонуклеопротеин; RIP – иммунопреципитация PHK-связывающего белка (RNA-Binding Protein Immunoprecipitation); DAPI – 4',6-диамидино-2-фенилиндол.

^{*} Адресат для корреспонденции.

Транскрипты теломерных ретротранспозонов являются матрицей для обратной транскрипции, что приводит к удлинению теломер. В доставке РНК *HeT-A* к теломере принимает участие РНК-связывающий белок Gag-HeT-A, кодируемый мРНК *HeT-A* [7]. Показано, что Gag-HeT-A в комплексе с транскриптом *HeT-A* способен локализоваться на теломере [8] и взаимодействовать с одним из белков теломерного комплекса, Ver, гомологом теломерного белка дрожжей Stn1, ингибитора теломеразы [7]. Нокдаун белка Gag-HeT-A в культуре клеток приводил к появлению слившихся хромосом, что является признаком дисфункции теломер [9]. Эти данные указывают на то, что белок Gag-HeT-A является специфичным компонентом теломерного хроматина, более того, способным связываться с РНК НеТ-А, что делает этот белок привлекательной мишенью исследования теломерного комплекса у Drosophila.

Несмотря на очевидные различия строения теломер у млекопитающих и дрозофилы, основные их компоненты функционально аналогичны. Так, удлинение происходит преимущественно в герминальных клетках с помощью обратной транскриптазы с использованием РНК-матрицы, причем теломераза и ретротранспозаза мобильных элементов филогенетически и функционально родственны [10, 11]. У млекопитающих мобильные элементы LINE-1 способны перемещаться на теломеры, имитируя поведение *HeT-A* у Drosophila [12], а также необходимы для удлинения теломер в раковых клетках [13]. У некоторых насекомых, например, у шелкопряда *Bombyx mori*, в теломерах присутствуют как теломеразные повторы, так и ретротранспозонные, что является промежуточным этапом перехода между этими взаимозаменяемыми способами удлинения теломер [14]. Транскрипция теломер и образование коротких теломерных РНК также происходят в обоих таксонах и, по-видимому, играют сходные роли [5, 15–18]. Говоря о теломерных белковых факторах, между млекопитающими и дрозофилой также наблюдается много общего [4]. Учитывая эти сходства, мы использовали Drosophila в качестве модельной системы для исследования теломерных РНК в герминальных тканях самок и в раннем развитии.

Исследуя теломеры в яичниках и раннем развитии дрозофилы, мы показали, что уровень транскрипции теломерных РНК тесно связан с формированием защитного теломерного комплекса [19]. В норме экспрессия теломерных повторов в яичниках сильно подавлена за счет различных механизмов сайленсинга, таких как система с участием piPHK (Piwi interacting RNA) и сборка специфичного для теломер репрессивно-

го хроматина. Нарушения работы факторов, ингибирующих экспрессию теломерного повтора дрозофилы НеТ-А в яичниках, приводило к высокому уровню летальности эмбрионов, сопровождавшемуся митотическими нарушениями, а именно образованием теломерных мостиков, мультиполярных веретен деления и свободных центросом [19]. Показано, что материнские теломерные РНК, образующиеся в питающих клетках яичника при дисфункции теломер, транспортируются в ооцит и оказываются в эмбрионах, где скапливаются вокруг центросом. Мы предполагаем, что теломерные транскрипты могут играть особую роль в раннем развитии при формировании бластодермы. В клетках человека выявлена колокализация некоторых теломерных белков, таких как TRF1 и танкираза, с центросомами [20, 21], что указывает на возможность функционального взаимодействия между митотическим аппаратом и теломерами. Однако механизм этого взаимодействия пока неясен.

Целью данной работы было исследование феномена привлечения материнских теломерных РНК к центросомам и создание системы для выявления возможных белков-партнеров, с которыми взаимодействуют теломерные РНК в раннем эмбриогенезе.

МЕТОДЫ ИССЛЕДОВАНИЯ

Создание конструкции pUASTattB-HeT-A-HA-FLAG. Для создания конструкции pUASTattB-НеТ-А ПЦР-продукты 34у-37у и 36у-20у, амплифицированные с геномной ДНК линии y¹; сп¹ $bw^{1} sp^{1}$, были обработаны эндонуклеазами рестрикции BgIII, XmaI и XmaI, XbaI соответственно и лигированы одновременно между сайтами BgIII, XbaI вектора pUASTattB. Последовательности, кодирующие НА и FLAG, были встроены в полученную плазмиду на 3'-конец открытой рамки считывания белка Gag следующим образом: ПЦР-продукты HeTA_CHIP_ORFS – 26v и 39v-24v, амплифицированные на матрице pUASTattB-HeT-A, были смешаны и использованы в перекрывающейся ПЦР с праймерами HeTA CHIP ORFS и 24v. Полученный ампликон был обработан эндонуклеазой рестрикции BstAPI и лигирован в pUAST-HeTAABstAPI, BstAPI. Последовательности праймеров представлены в таблице.

Культура клеток и линии *Drosophila*. Трансфекцию линии эмбриональных клеток дрозофилы Schneider 2 (S2) проводили с помощью реагента FuGENE 6 («Roche», Швейцария). Для проведения трансгенеза использовали линию

ОЛОВНИКОВ и др.

Праймеры,	использованные	работе
-----------	----------------	--------

Мишень	Название праймера	Последовательность праймера
pUASTattB-HeT-	20v	GATCAATCTAGAAACTTTGCTGGTGGAGGTACGG
A-HA-FLAG	24v	CCTTTATTTATGGGCCATCG
	26v	CTTGTCATCGTCGTCCTTGTAGTCAGCGTAATCGGGCACGTCATAAG- GGTAGTTGGATGTATCCATGTCAAG
	34v	GATCAAAGATCTCGTTCGCTTGCCAAAGACTCT
	36v	TTCTGACGATGAGGTACTTTCA
	37v	CTCTATTAGCTAAGCTTGTTGTG
	39v	GACTACAAGGACGACGATGACAAGTAATCTTACAACTACTTATATATTC
	HeTA_CHIP_ORFs	CCAGGCAAGCGGACAAACGA
rp49	rp49-f rp49-r	ATGACCATCCGCCCAGCATAC GCTTAGCATATCGATCCGACTGG
HeT-A ORF	HeT-A-ORF-f HeT-A-ORF-r	GGAGTGATGAGCGGCGGAAA CCAGGCAAGCGGACAAACGA
НеТ-А-НА	HeT-A-HA-f HeT-A-HA-r	AATCCCAACTCACAAAAAGGCC GTCCTTGTAGTCAGCGTAATCG
TART-A	TART-A-f TART-A-r	AATGAACTTTGTCTGCCCTCCCA ATCTGTCTACTGTCCGCCTTCGCTA
<i>І</i> -элемент	I-el-f I-el-r	ACAAAATCACTTCAAAAACATACCAATCCC GCATCCCTCAACTTCTCCTCCACAG

24862 (Bloomington Drosophila Stock Center). Для активации транскрипции в клетках S2 экспрессионная плазмида pUASTattB-HeT-A-HA-FLAG была котрансфицирована с плазмидой-драйвером pAC-GAL4. Для активации транскрипции HeT-A-HA-FLAG в мухах в геном трансгенной линии была генетически введена конструкция, содержащая активатор экспрессии GAL4 (w¹¹¹⁸, P{GAL4-nos.NGT}40, Bloomington Stock Center). Для получения герминального нокдауна гена *spnE* была генетически введена конструкция для экспрессии двуцепочечной PHK этого гена (линия 103913, Vienna Drosophila Resource Center).

Вестерн-блот-анализ и иммуноокрашивание, совмещенное с детекцией РНК. Для вестерн-блотанализа тотальные экстракты яичников разделяли в 8%-ном ПААГ и переносили на нитроцеллюлозную мембрану («GE Healthcare», США). Визуализацию сигнала осуществляли с использованием системы Immun-Star AP Detection System («Bio-Rad», США). Иммуноокрашивание, совмещенное с PHK FISH (fluorescence *in situ* hybridization), проводилось, как описано ранее [19]. В работе использовали следующие антитела: а/FLAG («Sigma», США), а/HA («Cell Signaling», США), а/ α -тубулин («Sigma», США), а/ γ -тубулин («Sigma», США), а/mouse-Alexa 488 («Life Technologies», США), а/mouse-Alexa 546 («Life Technologies», США), а/rabbit-Alexa 546 и 633 («Life Technologies», США). ДНК окрашена DAPI (4',6-diamidino-2-phenylindole). Съемка проводилась на конфокальном микроскопе Zeiss LSM 510 Meta («Zeiss», Германия).

Анализ количества РНК. RIP (RNA-Binding Protein Immunoprecipitation). Тотальную РНК выделяли из яичников трехдневных мух с использованием реагента TRIzol («Life Technologies», США). Обратная транскрипция (ОТ) проводилась с 6-нуклетидным праймером случайной последовательности и ревертазой SuperScriptII («Life Technologies», США) согласно рекомендациям производителя. Геноспецифичные праймеры, использованные для количественной ПЦР (ОТ-кПЦР), представлены в таблице.

Для проведения RIP получали тотальный лизат культуры клеток S2 после котрансфекции конструкциями, содержащими HeT-A-HA-FLAG и трансактиватор GAL4 под промотором гена актина. В качестве контроля использовали нетрансфицированные клетки S2. Контрольный и опытный экстракты были проинкубированы с анти-НА магнитными частицами («Pierce», США). Процедура иммунопреципитации с последующим выделением РНК и ОТ-ПЦР проводилась, как описано ранее [22]. В реакции обратной транскрипции использовались 6-нуклеотидный праймер со случайной последовательностью (random primer) и ревертаза SuperScriptIV («Life Technologies», США) согласно рекомендациям производителя.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Экспрессия трансгенного теломерного белка Gag-HeT-А. Для исследования локализации и функциональных партнеров теломерных РНК и белков была получена конструкция, содержащая полноразмерный ретротранспозон *HeT-A*, кодирующий маркированный белок Gag-HeT-A. Для этого полноразмерная геномная копия HeT-A была клонирована в вектор pUAST-attB, содержащий дрожжевой промотор UAS, индуцируемый за счет тканеспецифичной экспрессии трансактиватора GAL4-VP16. Полученная конструкция модифицирована таким образом, что кодируемый ею белок Gag содержит С-концевые пептиды HA (hemagglutinin) и FLAG (конструкция HeT-A-HA-FLAG, рис. 1, *a*). Эксперимент по трансфекции культуры клеток Drosophila S2 с помощью полученной конструкции с последующим вестерн-блот-анализом выявил белок Gag-HeT-A-HA-FLAG ожидаемого размера (рис. 1, δ). Данная конструкция была использована для трансгенеза линии мух, содержащих сайт посадки attP, с помощью сайт-специфической рекомбиназы фага phiC31.

Экспрессия полученной трансгенной копии *HeT-A* в герминальных клетках была проверена с помощью ОТ-кПЦР на тотальной РНК, выделенной из яичников трансгенной линии в норме и на фоне нокдауна с помощью РНК-интерференции (РНКи) РНК-хеликазы Spindle-E (SpnE), компонента системы сайленсинга с участием ріРНК. Известно, что система с участием ріРНК ингибирует транскрипцию ретротранспозонов, включая теломерные, в яичниках дрозофилы [5, 23]. Использование праймеров, специфичных для трансгенной копии и геномных копий *HeT-A*, показало, что уровень экспрессии трансгенной копии сравним с уровнем экспрессии геномных копий, причем при нокдауне spnE происходит дерепрессия как эндогенных, так и трансгенной копии НеТ-А (рис. 1, в). Однако рекомбинантный белок Gag-HeT-A-HA-FLAG выявляется с

помощью вестерн-блот-анализа в яичниках трансгенных мух только на фоне РНКи нокдауна белка SpnE (рис. 1, г). Иммуноокрашивание яичников трансгенных мух на фоне нокдауна *spnE* выявило накопление белка Gag-HeT-A-HA в питающих клетках и ооците, что указывает на то, что белок или комплекс РНК НеТ-А с белком транспортируется из питающих клеток в ооцит (рис. 2, см. цветную вклейку). Такая локализация была показана ранее для белка Gag-HeT-A, кодируемого эндогенными повторами *HeT-A* [7, 24]. Таким образом, получена трансгенная конструкция, содержащая полноразмерный теломерный повтор *HeT-A*, паттерн экспрессии которого сходен с эндогенными теломерными повторами НеТ-А.

мРНК НеТ-А взаимодействует с кодируемым ею белком Gag-HeT-А. Ранее было показано, что на фоне мутаций компонентов системы ріРНК в яичниках происходит гиперэкспрессия *HeT-A*, в результате в ооците накапливаются транскрипты *HeT-A* и белок Gag-HeT-A [7, 24, 25]. Колокализация транскриптов *HeT-A* с белком Gag-НеТ-А вблизи теломер наблюдалась в пролиферирующих соматических клетках дрозофилы [7]. Gag является РНК-связывающим белком и взаимодействует со своей мРНК-матрицей во время трансляции согласно принципу так называемого «цис-предпочтения» [26, 27]. Мы решили проверить с помощью метода RIP, происходит ли взаимодействие PHK HeT-A с кодируемым ею белком. Для этого была проведена иммунопреципитация с использованием иммобилизованных антител к эпитопу НА и лизатов клеток S2, контрольных и трансфицированных конструкцией HeT-A-HA-FLAG (рис. 3, *a*). Затем была очищена РНК, копреципитирующаяся с белками, и проанализирована с помощью ОТ-ПЦР (рис. 3, δ). Заметного обогащения преципитатов транскриптами ретротранспозонов І-элемент и TART не наблюдалось. В то же время было выявлено значительное обогащение РНК *HeT-A* в преципитате из клеток, экспрессирующих Gag-HA, что указывает на связывание PHK *НеТ-А* с белком Gag-HeT-A.

Локализация РНК *НеТ-А* вокруг центросом зависит от микротрубочек. РНК *НеТ-А* была обнаружена в цитоплазме синцития рядом с центросомами в эмбрионах на стадии, предшествующей началу зиготической транскрипции, при нарушении сайленсинга теломерных повторов в герминальных клетках яичника [19]. Следовательно, материнские теломерные РНК передаются потомству, однако их предназначение неизвестно. Механизм привлечения транскриптов *HeT-A* к центросоме в раннем эмбриогенезе также неизвестен. Центросомы являются цент-

Рис. 1. Экспрессия трансгенной копии *HeT-A* в культуре клеток и яичниках *Drosophila.* a – Схема трансгенной конструкции pUASTattB-HeT-A-HA-FLAG; δ – вестерн-блот-анализ экстрактов культуры нетрансфицированных клеток S2 (–) и клеток после трансфекции плазмидой, экспрессирующей Gag-HeT-A-HA-FLAG (+), с использованием антител к эпитопам HA, FLAG и α -тубулину в качестве контроля нанесения; e – сравнение количества транскриптов эндогенных *HeT-A* и трансгенного элемента *HeT-A* с помощью OT-кПЦР в тотальной PHK, выделенной из яичников трансгенной линии в норме (контроль) и на фоне PHKи нокдауна гена *spnE* (*spnE* KD); e – вестерн-блот-анализ экстрактов яичников контрольной линии *yw* (1) и трансгенной линии HeT-A-HA-FLAG в норме (2) и на фоне герминального PHKи нокдауна гена *spnE* (3) с использованием антител к эпитопу HA и α -тубулину в качестве контроля нанесения

БИОХИМИЯ том 81 вып. 9 2016

Рис. 3. мРНК *HeT-A* взаимодействует с кодируемым ей белком Gag-HeT-A. *a* – Вестерн-блот-анализ тотальных лизатов (лизат) и иммунопреципитатов (ИП) культуры нетрансфицированных клеток S2 (–) и клеток после трансфекции плазмидой, экспрессирующей Gag-HeT-A-HA-FLAG (+), с использованием антител к эпитопу HA; α-тубулин использован в качестве контроля нанесения; *δ* – ОТ-кПЦР РНК, полученной из анти/HA-иммунопреципитата (ИП) из культуры нетрансфицированных (контроль) и трансфицированных (опыт) клеток S2. Представлено соотношение количества копреципитированной РНК *I*-элемента, *HeT-A* и *TART*, нормализованной на контрольный транскрипт *rp49*, в опыте к контролю

рами полимеризации микротрубочек в процессе митоза, необходимыми для правильного расхождения хромосом. Минус-концы микротрубочек ассоциированы с центросомой. Специфическими маркерами микротрубочек и центросом являются α - и γ -тубулин соответственно. Мы предположили, что локализация РНК *НеТ-А* вблизи центросом зависит от микротрубочек. Действительно, в эмбрионах, обработанных колцемидом (реагентом, разрушающим микротрубочки), наблюдалось исчезновение скоплений гранул РНК *НеТ-А* вблизи центросом (рис. 4, *a*; см. цветную вклейку). Это указывает на то, что РНК *НеТ-А* перемещается к центросоме по микротрубочкам.

РНК теломерного элемента НеТ-А и кодируемый им белок Gag-HeT-A колокализуются в ранних эмбрионах вокруг центросом. Гиперэкспрессия теломерных транскриптов, которая происходит при нарушении работы теломерных белков в яичниках, сопровождается скоплением транскриптов *HeT-A* в виде крупных гранул вблизи центросом на стадии формирования бластодермы [19]. Предполагается, что в состав таких гранул входят белки, природа которых пока неясна. Мы предположили, основываясь на наших данных о взаимодействии РНК НеТ-А и Gag-HeT-A, что гранулы представляют собой рибонуклеопротеиновые (РНП) частицы, в состав которых входит РНК *НеТ-А* и белок Gag-HeT-A. Было проведено иммуноокрашивание с помощью антител к эпитопу НА, совмещенное с РНК-FISH (зонд к *HeT-A*), на 0-2-часовых эмб-

HeT-A-HA-FLAG, на фоне РНКи нокдауна гена spnE. Было обнаружено, что РНК ретроэлемента *HeT-A* в ранних эмбрионах на стадии синцития колокализуется с кодируемым им белком Gag-НеТ-А и формирует множественные РНП-гранулы вокруг центросом (рис. 4, б; см. цветную вклейку), не перекрываясь с компонентом центросом, у-тубулином. На стадии метафазы эти скопления более плотные и расположены ближе к центросоме, а на стадии анафазы они распределены более рыхло и удалены от центросом. Мы предполагаем, что комплекс РНК и белка, кодируемых теломерным элементом *HeT-A*, транспортируется по астральным микротрубочкам (не связанным с кинетохором) в сторону их минус-конца, который направлен к центросоме. На такой механизм транспорта указывает динамичный характер распределения РНК и белка *HeT-A*, которые выглядят как плотные гранулы, локализующиеся вокруг центросом, на стадии метафазы митоза и как «вспышки салюта» на стадии анафазы, что указывает на их радиальное движение от центросомы. Возможно, такое динамичное поведение РНП-частиц НеТ-А связано с процессами сборки-разборки микротрубочек на разных этапах клеточного цикла.

рионах трансгенной линии, кодирующей Gag-

В ходе исследования локализации теломерной РНК в раннем развитии дрозофилы при нарушении сайленсинга теломерных повторов в процессе оогенеза мы обнаружили, что материнские транскрипты теломерных повторов *HeT-A*

в комплексе с белком Gag-HeT-A, кодируемым этими повторами, привлекаются к центросомам с помощью микротрубочек на стадии формирования бластодермы. Нарушения работы теломер, происходящие, в частности, при нарушении ріРНК-сайленсинга, могут привести к неправильной сегрегации хромосом. Не исключено, что направленный транспорт теломерных транскриптов и кодируемых ими белков, гиперпродуцируемых при таких нарушениях, в бластодерму эмбриона служит одним из сигналов к выбраковке дефектных ядер – процесса, гарантирующего нормальное развитие. Поскольку мы не наблюдали ассоциации теломерных транскриптов и белков с теломерами в митотических ядрах бластодермы, можно предположить, что их функция здесь не связана с теломерами напрямую. Использованная в работе трансгенная полноразмерная копия *HeT-A* и кодируемый ею белок, маркированный искусственными эпитопами, являются перспективными молекулярными орудиями для исследования предполагаемых белков-партнеров теломерной РНК в раннем эмбриогенезе в норме и при нарушении функции теломер.

Работа выполнена при финансовой поддержке РНФ (грант № 16-14-10167) и РФФИ (грант № 16-04-00090, руководитель Оловников И.А.) с использованием оборудования Центра клеточных и генных технологий ИМГ РАН.

Авторы выражают благодарность Ю.А. Абрамову за помощь в генетической работе и Е.А. Михалевой за постановку эксперимента по трансфекции культуры клеток.

СПИСОК ЛИТЕРАТУРЫ

- 1. Azzalin, C.M., and Lingner, J. (2015) Telomere functions grounding on TERRA firma, *Trends Cell Biol.*, **25**, 29–36.
- 2. Reig-Viader, R., Brieno-Enriquez, M.A., Khouriauli, L., Toran, N., Cabero, L., Giulotto, E., Garcia-Caldes, M., and Ruiz-Herrera, A. (2013) Telomeric repeat-containing RNA and telomerase in human fetal oocytes, *Hum. Reprod.*, 28, 414–422.
- 3. Pardue, M.L., and DeBaryshe, P.G. (2003) Retrotransposons provide an evolutionarily robust nontelomerase mechanism to maintain telomeres, *Annu. Rev. Genet.*, 37, 485–511.
- 4. Raffa, G.D., Cenci, G., Ciapponi, L., and Gatti, M. (2013) Organization and evolution of *Drosophila* terminin: similarities and differences between *Drosophila* and human telomeres, *Front. Oncol.*, **3**, 112.
- Savitsky, M., Kwon, D., Georgiev, P., Kalmykova, A., and Gvozdev, V. (2006) Telomere elongation is under the control of the RNAi-based mechanism in the *Drosophila* germline, *Genes Dev.*, 20, 345–354.
- Shpiz, S., Kwon, D., Rozovsky, Y., and Kalmykova, A. (2009) rasiRNA pathway controls antisense expression of *Drosophila* telomeric retrotransposons in the nucleus, *Nucleic Acids Res.*, 37, 268–278.
- Zhang, L., Beaucher, M., Cheng, Y., and Rong, Y.S. (2014) Coordination of transposon expression with DNA replication in the targeting of telomeric retrotransposons in *Drosophila*, *EMBO J.*, 33, 1148–1158.
- Rashkova, S., Karam, S.E., Kellum, R., and Pardue, M.L. (2002) Gag proteins of the two *Drosophila* telomeric retrotransposons are targeted to chromosome ends, *J. Cell Biol.*, 159, 397–402.
- 9. Silva-Sousa, R., Lopez-Panades, E., Pineyro, D., and Casacuberta, E. (2012) The chromosomal proteins JIL-1 and Z4/Putzig regulate the telomeric chromatin in *Drosophila melanogaster*, *PLoS Genet.*, **8**, e1003153.
- Belfort, M., Curcio, M.J., and Lue, N.F. (2011) Telomerase and retrotransposons: reverse transcriptases that shaped genome, *Proc. Natl. Acad. Sci. USA*, 108, 20304–20310.
- 11. Kopera, H.C., Moldovan, J.B., Morrish, T.A., Garcia-Perez, J.L., and Moran, J.V. (2011) Similarities between long

interspersed element-1 (LINE-1) reverse transcriptase and telomerase, *Proc. Natl. Acad. Sci. USA*, **108**, 20345–20350.

- Morrish, T.A., Garcia-Perez, J.L., Stamato, T.D., Taccioli, G.E., Sekiguchi, J., and Moran, J.V. (2007) Endonucleaseindependent LINE-1 retrotransposition at mammalian telomeres, *Nature*, 446, 208–212.
- Aschacher, T., Wolf, B., Enzmann, F., Kienzl, P., Messner, B., Sampl, S., Svoboda, M., Mechtcheriakova, D., Holzmann, K., and Bergmann, M. (2016) LINE-1 induces hTERT and ensures telomere maintenance in tumour cell lines, *Oncogene*, 35, 94–104.
- Fujiwara, H., Osanai, M., Matsumoto, T., and Kojima, K.K. (2005) Telomere-specific non-LTR retrotransposons and telomere maintenance in the silkworm, *Bombyx mori*, *Chromosome Res.*, 13, 455–467.
- Azzalin, C.M., Reichenbach, P., Khoriauli, L., Giulotto, E., and Lingner, J. (2007) Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends, *Science*, **318**, 798–801.
- Bah, A., Wischnewski, H., Shchepachev, V., and Azzalin, C.M. (2012) The telomeric transcriptome of *Schizosaccharomyces pombe*, *Nucleic Acids Res.*, 40, 2995–3005.
- 17. Cao, F., Li, X., Hiew, S., Brady, H., Liu, Y., and Dou, Y. (2009) Dicer independent small RNAs associate with telomeric heterochromatin, *RNA*, **15**, 1274–1281.
- Vrbsky, J., Akimcheva, S., Watson, J.M., Turner, T.L., Daxinger, L., Vyskot, B., Aufsatz, W., and Riha, K. (2010) siRNA-mediated methylation of *Arabidopsis* telomeres, *PLoS Genet.*, 6, e1000986.
- Morgunova, V., Akulenko, N., Radion, E., Olovnikov, I., Abramov, Y., Olenina, L.V., Shpiz, S., Kopytova, D.V., Georgieva, S.G., and Kalmykova, A. (2015) Telomeric repeat silencing in germ cells is essential for early development in *Drosophila*, *Nucleic Acids Res.*, 43, 8762–8773.
 Nakamura, M., Zhou, X.Z., Kishi, S., Kosugi, I., Tsutsui,
- Nakamura, M., Zhou, X.Z., Kishi, S., Kosugi, I., Tsutsui, Y., and Lu, K.P. (2001) A specific interaction between the telomeric protein Pin2/TRF1 and the mitotic spindle, *Curr. Biol.*, 11, 1512–1516.
- 21. Smith, S., Giriat, I., Schmitt, A., and De Lange, T. (1998) Tankyrase, a poly(ADP-ribose) polymerase at human telomeres, *Science*, **282**, 1484–1487.

БИОХИМИЯ том 81 вып. 9 2016

- 22. Jain, R., Devine, T., George, A.D., Chittur, S.V., Baroni, 25. Vagin, V.V.
- T.E., Penalva, L.O., and Tenenbaum, S.A. (2011) RIP-Chip analysis: RNA-binding protein immunoprecipitation-microarray (Chip) profiling, *Methods Mol. Biol.*, **703**, 247–263.
- Brennecke, J., Aravin, A.A., Stark, A., Dus, M., Kellis, M., Sachidanandam, R., and Hannon, G.J. (2007) Discrete small RNA-generating loci as master regulators of transposon activity in *Drosophila*, *Cell*, **128**, 1089–1103.
- 24. Lopez-Panades, E., Gavis, E.R., and Casacuberta, E. (2015) Specific localization of the drosophila telomere transposon proteins and RNAs, give insight in their behavior, control and telomere biology in this organism, *PLoS One*, **10**, e0128573.
- Vagin, V.V., Klenov, M.S., Kalmykova, A.I., Stolyarenko, A.D., Kotelnikov, R.N., and Gvozdev, V.A. (2004) The RNA interference proteins and vasa locus are involved in the silencing of retrotransposons in the female germline of *Drosophila melanogaster*, *RNA Biol.*, 1, 54–58.
- Wei, W., Gilbert, N., Ooi, S.L., Lawler, J.F., Ostertag, E.M., Kazazian, H.H., Boeke, J.D., and Moran, J.V. (2001) Human L1 retrotransposition: *cis* preference versus trans complementation, *Mol. Cell. Biol.*, **21**, 1429–1439.
- Kulpa, D.A., and Moran, J.V. (2006) *Cis*-preferential LINE-1 reverse transcriptase activity in ribonucleoprotein particles, *Nat. Struct. Mol. Biol.*, 13, 655–660.

INTERACTION OF TELOMERIC RETROELEMENT HeT-A TRANSCRIPTS AND THEIR PROTEIN PRODUCT Gag IN EARLY EMBRYOGENESIS OF Drosophila

I. A. Olovnikov, V. V. Morgunova, A. A. Mironova, M. Y. Kordyukova, E. I. Radion, O. M. Olenkina, N. V. Akulenko, and A. I. Kalmykova*

Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182 Russia; E-mail: allakalm@img.ras.ru

> Received June 30, 2016 Revision received July 4, 2016

The telomere is a nucleoprotein complex at the ends of linear chromosomes that protects them from fusion and degradation. The telomere consists of telomeric DNA, a protective protein complex, and telomeric RNA. Biogenesis of telomeric transcripts in development is still far from being understood. *Drosophila* telomeres are elongated by a transposition of specialized telomeric retrotransposons that encode proteins. Using transgenic constructs encoding tagged telomeric protein, we show that transcripts of *Drosophila* telomeric element *HeT-A* bind Gag-HeT-A protein encoded by these transcripts. Maternal *HeT-A* transcripts and Gag-HeT-A form ribonucleoprotein granules around centrosomes, centers of microtubule organization, during blastoderm formation, upon disruption of telomere silencing during oogenesis. Specific localization of *HeT-A* RNA is dependent on microtubules since disruption of microtubules caused delocalization of *HeT-A* transcripts. This transgenic system is a valuable model for the study of telomeric RNA biogenesis.

Key words: telomere, development, retrotransposon HeT-A, Drosophila, telomeric RNA