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Little is known about how gene expression variation within a given species controls phenotypic variation under different

treatments or environments. Here, we surveyed the transcriptome response of seven diverse Arabidopsis thaliana

accessions in response to two treatments: the presence and absence of exogenously applied salicylic acid (SA), an

important signaling molecule in plant defense. A factorial experiment was conducted with three biological replicates per

accession with and without applications of SA and sampled at three time points posttreatment. Transcript level data from

Affymetrix ATH1 microarrays were analyzed on both per-gene and gene-network levels to detect expression level

polymorphisms associated with SA response. Significant variation in transcript levels for response to SA was detected

among the accessions, with relatively few genes responding similarly across all accessions and time points. Twenty-five of

54 defined gene networks identified from other microarray studies (pathogen-challenged Columbia [Col-0]) showed a

significant response to SA in one or more accessions. A comparison of gene-network relationships in our data to the

pathogen-challenged Col-0 data demonstrated a higher-order conservation of linkages between defense response gene

networks. Cvi-1 and Mt-0 appeared to have globally different SA responsiveness in comparison to the other five accessions.

Expression level polymorphisms for SA response were abundant at both individual gene and gene-network levels in the

seven accessions, suggesting that natural variation for SA response is prevalent in Arabidopsis.

INTRODUCTION

Variation in transcript abundance, termed expression level poly-

morphism (ELP) (Doerge, 2002), influences quantitative pheno-

typic variation in organisms. Investigation of ELPs using global

gene expression methodologies in defined mapping populations

has recently enabled progress toward understanding the poten-

tial role of gene expression variation in quantitatively inherited

traits (Wang et al., 1999; Carrol, 2000; Brem et al., 2002;

Kliebenstein et al., 2006a, 2006b; West et al., 2007). In plants,

naturally occurring ELPs have been associated with phenotypic

traits such as developmental changes during maize (Zea mays)

domestication (Wang et al., 1999), flowering time control in

Arabidopsis thaliana (Johanson et al., 2000; Caicedo et al., 2004;

Werner et al., 2005), qualitative resistance to pathogens (Grant

et al., 1995; Gassmann et al., 1999; Borevitz et al., 2003),

and Arabidopsis insect resistance and secondary metabolism

(Kliebenstein et al., 2001, 2002; Lambrix et al., 2001). Typically,

these ELP-controlled quantitative trait loci (QTL) are associated

with large phenotypic effects, and their potential interactions

with environment or treatment have not been characterized.

Most genes for which an ELP is associated with a phenotypic-

based QTL contain cis-regulatory polymorphisms. It is possible

that the genes controlling QTL that interact with environments

and treatments are different genes from those controlling QTL

that are stable across environments and treatments (Via et al.,

1995; Sultan, 2000). Identifying the genes that regulate QTL 3

environment and QTL 3 treatment interactions is necessary to

understand the molecular basis of phenotypic plasticity.

Differential regulation of gene expression is a well-characterized

response to changes in environments and treatments; variation

within this process may be the basis for ELPs exhibited only

under specific environmental or treatment conditions. For ex-

ample, if two individuals had a sequence polymorphism affecting

a cis-DNA regulatory element required for a gene’s response to a

specific treatment, then these two individuals would display an

ELP for this gene only in the presence of the treatment. Alterna-

tively, if the sequence polymorphism occurred in a transcription

factor required for response to the treatment, it could act in trans

to generate numerous environment/treatment-dependent ELPs.

Since environmentally stable ELPs are known to control some

phenotypic-based QTLs (Wang et al., 1999; Kliebenstein et al.,
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2001; Lambrix et al., 2001), ELPs exhibiting interactions with

environments or treatments may be a contributing factor toward

genotype 3 environment interactions.

Salicylic acid (SA) is an endogenous plant compound that is an

important signaling molecule and regulator of plant defense

responses (Gaffney et al., 1993; Delaney et al., 1995). The genetic

control of response to SA within the Columbia (Col-0) accession

of Arabidopsis has been extensively studied and provides a

baseline for investigating conditional ELPs in other Arabidopsis

accessions. Our previous analysis of transcript level variation in a

replicated factorial Affymetrix ATH1 microarray experiment with

seven diverse Arabidopsis accessions focused on the analysis of

stable ELPs (i.e., ELPs that did not exhibit a treatment interaction)

(Kliebenstein et al., 2006a). The (factorial) design of the exper-

iment included the presence and absence of exogenous SA:

therefore, it is also possible to examine these data for treatment-

dependent or conditional ELPs (i.e., ELPs that significantly differ

among accessions for their response to a treatment). While the

presence or absence of SA is not typically considered as an

environmental fluctuation, it can serve as a model for the range of

biological responses that may underlie complex environmental

fluctuations and their effects on ELP 3 environment/treatment

and genotype 3 environment/treatment interactions.

Here, we analyzed data from the seven-accession factorial

Affymetrix microarray experiment described by Kliebenstein

et al. (2006a) to investigate conditional ELPs. We first used

analysis of variance to detect expression differences on a per-

gene level to test the frequency of individual genes that exhibit

treatment-dependent ELPs. We also used a priori–defined gene

networks of coexpressed genes to test for the presence of

treatment-dependent variation at the level of gene networks and

were able to successfully separate ELP variation into individual

gene and gene-network levels. We anticipate that this knowl-

edge about ELP variation will contribute toward understanding

how genotype 3 environment/treatment interactions affect and

control quantitative trait phenotypes.

RESULTS

Pairwise Accession Comparisons for

SA-Responsive Genes

We investigated transcript-level variation among all 21 pairs of

seven accessions using split plot analyses of variance (ANOVA)

and t tests to detect genes exhibiting either stable or conditional

ELPs. This statistical analysis identified an average of 1267

genes per accession pair whose transcript accumulation was

responsive to SA (range ¼ 802 to 1744 genes; Table 1). On av-

erage, 689 of these genes showed differential SA response be-

tween the two accessions (range 411 to 1013 genes; Table 1).

This is slightly more than half of all SA-responsive genes within an

accession pair that showed differential SA responses; these are

the genes exhibiting treatment-dependent or conditional ELPs.

For the entire collection of pairwise comparisons, ;95% (3620

out of a total of 3837 SA-responsive genes) of the transcripts with

an SA response showed evidence of a genotype 3 treatment

interaction. The number of conditional ELPs is approximately

one-third of the number of stable ELPs (i.e., ELPs that do not

exhibit a treatment interaction), which have been described

previously (Kliebenstein et al., 2006a).

The majority of SA-responsive genes showed an SA response

in only one or a few accessions (Figure 1). Only 38 genes were SA

responsive in the majority of accessions (Figure 1, inset). If the

transcriptional response regulated by SA is critical to a plant’s

defense ability, a higher level of conservation across accessions

would be expected in terms of the genes responding to SA.

However, a gene-by-gene comparison may not be the most

informative analysis since the expression of individual genes is

controlled both by their own promoters and the signal transduc-

tion networks upstream of the promoter. Natural variation within

the SA signal transduction networks may alter transcript accu-

mulation for groups of genes and thereby minimize our ability to

infer patterns from variation in individual genes.

If there is variation among accessions in the signal transduc-

tion response, some accessions may be either hyper- or hypo-

responsive to the SA treatment. In hyperresponsive accessions,

more genes would be expected to change their expression levels

in response to SA treatment compared with hyporesponsive ac-

cessions. To test for altered responsiveness, we determined the

number of genes responding to SA, either up or down, within each

accession for each pairwise comparison. At 4 h posttreatment

Table 1. Pairwise ANOVAs on a per-Gene Basis for Detection of

Genotype 3 Treatment Interactions

Accession 1 Accession 2

Parental

Difference

SA

Response Interaction

Col-0 Cvi-1 3109 1733 1013

Col-0 Est-1 2359 1744 931

Col-0 Kin-0 2238 1451 730

Col-0 Mt-0 1690 1360 588

Col-0 Tsu-1 2567 1586 847

Col-0 Van-0 2481 1236 642

Cvi-1 Est-1 2869 1450 857

Cvi-1 Kin-0 3170 1274 772

Cvi-1 Mt-0 3369 1186 764

Cvi-1 Tsu-1 2695 1282 776

Cvi-1 Van-0 3307 1141 674

Est-1 Kin-0 1970 1178 632

Est-1 Mt-0 1910 1433 672

Est-1 Tsu-1 1987 1267 674

Est-1 Van-0 1846 1036 524

Kin-0 Mt-0 1440 1010 448

Kin-0 Tsu-1 1732 1046 549

Kin-0 Van-0 1640 802 411

Mt-0 Tsu-1 1934 1348 764

Mt-0 Van-0 1988 1221 776

Tsu-1 Van-0 1490 833 415

Total 9222 3837 3620

The parental difference column indicates the number of genes showing

a difference in expression between the two accessions. The SA re-

sponse column indicates the number of genes showing an SA response

in the pairwise ANOVA comparing the two accessions, either up- or

downregulated. The interaction column indicates the number of genes

that show a differential SA response between the accessions. These

genes are also counted in both the parental difference and SA response

columns. Total indicates number of unique genes per column.
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(hpt), accessions Col-0 and Mt-0 showed significantly more

genes showing an SA response compared with the other acces-

sions at 4 hpt (Figure 2A). Mt-0 had on average twice as many

genes showing an SA response than the other accessions, while

Col-0 had 1.5 times as many genes. By contrast, Cvi-1 had half

the number of SA-responsive genes as the other accessions

(Figure 2A). At 28 hpt, Van-0 had a significant enhancement in the

number of SA-responsive genes, while the other accessions had

similar ratios (Figure 2B). At all time points, Cvi-1 had the lowest

level of SA-responsive genes (Figures 2A to 2C). Collectively,

these results are consistent with natural variation among the

accessions at the gene-network level for SA responses.

Variation in SA-Responsive Gene Networks

To examine gene-network level variation, we used 54 defense-

related, coregulated groups of genes (i.e., putative gene net-

works) that were defined from public microarray data sets on the

reference accession, Col-0 (see Methods). These 54 ad hoc–

defined, defense-related gene networks allowed us to directly

test for higher-order variation in SA response among the seven

accessions. Individual statistical analyses (ANOVA) on each of

the seven accessions resulted in 25 of the 54 gene networks

having a significant SA response in at least one of the seven

accessions (Table 2), with most of the differential SA responses

being detected at 4 hpt (Table 2). This latter observation may

have been due to the treatment consisting of a single exogenous

application of SA whose effects diminished over time. Of the 25

SA-responsive gene networks, 14 gene networks were upregu-

lated by SA (1400, 9000, 9300, 9400, 9403, a403, b000, b003,

b300, b303, b400, b403, c000, and c003), and 11 gene networks

were downregulated (1000, 1004, 1100, 1104, 2000, 2100, 3000,

5003, 7400, 740x, and z100). Interestingly, gene network 1100 is

downregulated with SA treatment at 4 hpt in all accessions but

upregulated at 28 or 52 hpt. The majority of gene networks

showed evidence for differential expression among accessions,

Figure 1. Variation in Gene Response to SA Treatment in Seven Acces-

sions.

All genes that responded significantly to SA treatment at any time point

(4, 28, and 52 hpt) were classified with respect to the number of

accessions for which they showed a statistically significant response to

SA treatment. The inset shows detail for the genes that responded in

three to seven accessions.

Figure 2. Hypo- and Hyperresponses to SA Treatment as Measured by

Individual Genes.

The number of genes responding to SA in each of the accessions (as

detected in the six pairwise analyses) was divided by the number of

genes responding in the other accession in the pairwise analysis. Each

analysis was conducted independently at each of three time points

posttreatment. t tests were used to test for statistically significant

differences in the ratio of SA-responsive genes between the seven

accessions. Bars represent SE. Different letters represent statistically

different groupings at P ¼ 0.05.

(A) 4 hpt.

(B) 28 hpt.

(C) 52 hpt.
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suggesting variation in gene-network level SA response within

these seven accessions (Table 2).

Characterization of SA-Responsive Gene Networks

We investigated the potential biological function of the SA-

responsive gene networks by conducting GOslim term functional

categorization analysis. The biological process category ‘‘re-

sponse to abiotic or biotic stimuli’’ was significantly overrepre-

sented in both up- and downregulated gene networks (see

Supplemental Figure 2 online). The category ‘‘electron transport

or energy pathways’’ was overrepresented in the downregulated

gene networks (see Supplemental Figure 2 online), which agrees

with the analysis of cellular components showing an overrepre-

sentation of ‘‘chloroplast’’ and ‘‘plastid’’ categories in these

same gene networks (see Supplemental Figure 3 online). We

performed a lower-level Gene Ontology (GO) term analysis and

found that the upregulated gene networks were enriched in

signaling and defense processes (see Supplemental Table 5

online), while the downregulated gene networks were enriched in

photosynthetic processes (see Supplemental Table 6 online). We

also investigated the potential bias in promoter elements within

the identified SA-responsive gene networks. As expected from

the GO analysis that identified photosynthetic genes as down-

regulated by SA, the significantly overrepresented promoter

elements for the downregulated genes showed a prevalence of

light-responsive promoter elements, while the upregulated

genes showed a prevalence of stress-responsive promoter

elements (see Supplemental Tables 7 and 8 online).

SA-Responsive Gene Networks: A Comparison of Data Sets

To determine if relationships among the 25 SA-responsive gene

networks are similar between the 16ATH1 data set from Col-0

and our seven-accession natural variation data set, we subjected

each of these two data sets to Local Context Finder (LCF)

analysis to generate graphical relationships based on nonlinear

dimension reduction (Katagiri and Glazebrook, 2003). Unlike

hierarchical clustering, which is limited to single dimension

relationships, LCF analysis provides information about the rela-

tionships among the gene networks in multiple dimensions.

Similar gene-network relationships are evident in both data sets,

with two larger groups of gene networks clustering together in

both data sets (see Supplemental Figure 4 online, compare A and

B to C and D). These two groups correspond to the SA

upregulated and SA downregulated gene networks. For the

control data sets (see Supplemental Figures 4A and 4C online),

the 16ATH1 data set identified 87 connections, while the seven-

accession data set identified 91 connections, with 52 connec-

tions overlapping. In the treatment data sets (see Supplemental

Figures 4B and 4D online), 16ATH1 identified 90 connections, the

seven-accession data set identified 89 connections, and there

Table 2. Differential Gene-Network Expression in Response to SA Treatment in Seven Arabidopsis Accessions

Col-0 Cvi-1 Est Kin-0 Mt-0 Tsu-1 Van-0

Network 4 28 52 4 28 52 4 28 52 4 28 52 4 28 52 4 28 52 4 28 52

1000 Dn – – Dn – – Dn – – Dn – – Dn – – Dn – Up Dn – –

1004 Dn – – Dn – – Dn – – Dn – – Dn – – Dn – – Dn – –

1100 Dn – Up Dn Up – Dn Up Up Dn – Up Dn – Up Dn – Up Dn – –

1104 Dn – Up Dn – – Dn – Up Dn – – Dn – Up Dn – – Dn – –

1400 – – Dn – – – – – – – – – – – – – – – – – –

2000 Dn – Up – – – – – – Dn – – Dn – – – – – Dn – –

2100 Dn – Up – – – Dn – Up Dn – – Dn – – – – – Dn – –

3000 Dn – – – – – – – – – – – – – – – – –

5003 Up Dn – Up – – Up – – Up – – Up – – Up – – Up – –

7400 – – – – – – – – – – – – – – – Dn – – – – –

740x Dn – – – – – Dn – – Dn – – – – – Dn – – – – –

9000 Up – – – – – Up – – Up – – Up – – Up – – – – –

9300 Up – – Up – – Up – Dn Up – – Up – – Up Up – Up – –

9400 Up – – Up – – Up – – Up – – – – – Up – – Up – –

9403 Up – – Up – – Up – – – – – Up – – Up – – Up – –

a403 – – – Up – – Up – – – – – Up – – – – – – – –

b000 Up – – Up – – Up – – Up – – Up – – Up – – Up – –

b003 Up – – Up – – Up – – – – – Up – – Up – – Up – –

b300 Up – – Up – – Up – – Up – – Up – – Up – – Up – –

b303 Up – – Up – – Up – – – – – Up – – Up – – Up – –

b400 Up – – – – – Up – – Up – – Up – – Up – – – – –

b403 Up – – Up – – Up – – Up – – Up – – Up – – Up – –

c000 Up – – – – – Up – – Up – – – – – – – – – – –

c003 Up – – – – – Up – – – – – Up – – Up – – – – –

z100 Dn – – – – – – – – – – – – – – Dn – – – – –

Cells designated with Dn or Up indicate gene networks with significantly different downregulation and upregulation, respectively, in response to SA

treatment as detected by ANOVA for three sample time points (4, 28, and 52 hpt) per accession. The dashes indicate the comparisons for which no

statistically significant differences between control and SA treatment were detected.
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were 54 connections in the intersection of these analyses.

Basically, we have illustrated that natural genetic variation

among these seven accessions identifies similar, but not iden-

tical, gene-network relationships as within the Col-0 accession.

Gene expression within the 25 SA-responsive gene networks

had an average correlation of 0.176 within the seven-accession

data, while a random sample of genes had an average correlation

of only 0.018. The similarity in coregulation and network con-

nections across data sets suggests that the gene networks

defined within Col-0 are also behaving as networks within other

accessions. Based on this information and these results, it

appears that we can use the gene networks defined in Col-0 to

analyze SA responses in the other accessions. However, this

approach does not permit identification of gene networks that

are specific to the other accessions.

Diversity of Gene-Network Expression among Accessions

Our gene-network analysis suggested that there are differential

gene-network level responses to SA among the accessions

(Table 2). There was also supporting evidence for differential

gene-network responses from the individual gene responses

within SA hyper- and hyporesponsive accessions (Figure 2). We

used the 25 SA-responsive gene networks to determine whether

there was evidence of hyper- and hyporesponsive accessions

at the gene-network level. The average response of the 25 gene

networks to SA treatment at 4 hpt was lowest in Cvi-1 and the

greatest in Mt-0, while the other accessions had a similar average

response (Figure 3). This result agreed with the per-gene analysis

where Mt-0 had an elevated response, while Cvi-1 had a lower

response in comparison to the other accessions (Figure 2).

To directly test for variation in gene-network level accession 3

treatment interactions, we used a mixed linear model (ANOVA) to

test for pairwise differences between Col-0 and each of the other

six accessions (see Supplemental Figure 5 online). This analysis

identified instances in which a gene network showed differential

transcript accumulation between Col-0 and the other six acces-

sions in only the SA-treated samples, in only the control samples,

or in both the SA-treated and control samples. Two examples of

Figure 3. Hypo- and Hyperresponses to SA as Measured by Gene-

Network Variation.

The 25 SA-responsive networks were classified as either up- or down-

regulated, and the two groups were analyzed separately. For each

accession, the average network expression value was obtained for each

network from both the control and SA treatments. Only the 4-hpt time

point was used. For each accession, the average response of the SA-

upregulated networks (A) or SA-downregulated networks (B), respec-

tively, was determined by dividing the mean network expression value

under SA by its mean expression value under control conditions. The

average value across all networks is presented. t tests were used to

detect significant differences between the means; different letters rep-

resent statistically different groupings at P ¼ 0.05. Bars represent SE.

Figure 4. Gene-Network Expression Response to SA Treatment in

Seven Accessions.

The average gene-network expression value under control and SA

treatments at 4 hpt for the seven accessions is presented for three

example gene networks. Bars represent SE.

(A) Variable SA-mediated upregulation in network b300.

(B) Variable SA-mediated downregulation in network 1104.

(C) Gene network 3000 for which Col-0 is significantly different from the

other accessions.
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gene networks with treatment-dependent variation between the

accessions are b300 and 1104 (Figures 4A and 4B). Most gene

networks showed accession 3 treatment variation in only a few

of the six pairwise comparisons, with the exception of one gene

network (3000) that varied in all comparisons. Gene network

3000 had significantly reduced expression in Col-0 under both

conditions in comparison to the other accessions (Figure 4C).

These data and results indicate significant natural variation in

gene-network level responses to SA within Arabidopsis.

Interconnected Gene-Network Variation

The variation in gene networks did not show an obvious pattern

across pairwise comparisons with Col-0 (see Supplemental

Figure 5 online). To determine whether a higher-order pattern

was present, we used the LCF relationships among the gene

networks within Col-0 from the 16ATH data set (see Supple-

mental Figure 4D online) as a framework to indicate the node

position for each network and its linkages to the other nodes.

Subsequently, for each pairwise network ANOVA for our seven-

accession data set, we colored in the network nodes that

showed a statistically significant difference between Col-0 and

the other accession; those network nodes with no significant

difference were left blank (Figure 5). The majority of gene net-

works showing significant pairwise variation tended to be inter-

connected by one or more links (Figure 5). For example, in the

Col-0 versus Mt-0 comparison, most of the variable gene net-

works are linked in the multidimensional space, suggesting that

there may be higher-order signaling pathway polymorphisms

controlling multiple gene networks (Figure 5). By contrast, poly-

morphisms that are relatively isolated in the multidimensional

representation (i.e., b403 in Col-0 versus Cvi-1) are likely to be

polymorphisms limited to a specific gene network (Figure 5).

DISCUSSION

A large factorial microarray analysis of transcript level variation in

response to an SA treatment identified significant levels of

natural variation among seven diverse Arabidopsis accessions.

This variation included dramatic differences in SA treatment

responses at both the individual-gene (transcript) level and the

gene-network level (Table 2, Figures 1 to 5). Accession 3

treatment-dependent ELPs accounted for approximately one-

third of all ELPs detected in this experiment, suggesting that

Arabidopsis has a highly variable, largely plastic transcriptome.

The SA response of a single accession’s transcriptome is not highly

predictive of other accessions nor is it predictive of the species.

Individual Gene Treatment-Dependent ELPs

More than 9000 genes displayed an ELP among these seven

accessions (Table 1). Additionally, 3837 genes showed a signif-

icant response to SA treatment (Table 1), which is many more

than previously identified in Arabidopsis studies employing mu-

tants in primarily one genetic background, Col-0 (Glazebrook

et al., 2003). Interestingly, the majority of SA-responsive genes

did not respond similarly across accessions; ;95% of SA-

responsive genes exhibited genotype 3 treatment-dependent

ELPs (Table 1, Figure 1). Individual genes showed various

patterns of variation: SA responsive in one accession and con-

stitutively high in another; SA responsive in one accession and

constitutively low in another; and differentially SA responsive in a

comparison of two accessions (data not shown).

There are two possible explanations for the observed genetic

diversity in the ability of individual genes to respond to SA

treatment. The first explanation is that there are few conserved

SA-responsive genes, and the control of individual gene tran-

scripts has evolved to respond to diverse signaling pathways.

This model is supported by the idea that most signaling is

buffered by the presence of multiple pathways, such as ethylene,

jasmonic acid, reactive oxygen species, and SA for plant–pathogen

interactions (Glazebrook et al., 2003). A gene that is regulated in

response to pathogen attack may be controlled by multiple

signaling pathways; if so, this gene would still be pathogen

regulated even if its promoter lost the ability to respond to one

specific signaling pathway. For instance, if a gene is regulated by

SA and reactive oxygen species, it could vary for its SA response

but not vary for its pathogen response as it would still be induced

by reactive oxygen species. Testing this hypothesis would

require a comparison of the level of genotype 3 treatment-

dependent ELPs in this study to another study measuring natural

variation in plant transcriptome responses to a pathogen.

The second potential explanation is that there are a large

number of conserved SA-responsive genes but that their co-

regulation by signal transduction networks diminishes our ability

to identify them. This would occur if genotype 3 treatment-

dependent ELPs are predominantly caused by variation within

the signaling response to SA. Given sufficient diversity in the

signaling response, very few individual genes would respond

similarly in all accessions. This idea is supported by our obser-

vations that there are hyper- and hypo-SA-responsive acces-

sions (Figures 2 and 3) as well as genetic variation controlling

gene networks (Figures 3 to 5). An expression QTL analysis

examining the genetic position of loci controlling the genotype 3

treatment-dependent ELPs may have the potential to directly

test this idea. If genotype 3 treatment-dependent ELPs are

largely controlled by network level variation, then expression

QTL hot spots will exist at the position of the genetic variation

regulating the SA responsiveness of numerous genes.

Gene-Network Variation

In addition to identifying individual transcripts with treatment-

dependent genetic variation, we detected significant variation for

the genetic control of groups of genes (i.e., gene-network var-

iation) (Figures 3 to 5). Twenty-four of 25 SA-responsive putative

gene networks defined by coexpression in other studies showed

evidence of significant variation within the seven accessions

(Figure 5; see Supplemental Figure 5 online). This variation

ranged from controlling large clusters of interconnected gene

networks to altering individual, isolated networks (Figure 5). This

result suggests that there can be genetic variation for signaling

responses that lie within different levels of the signaling network

controlling SA responses, ranging from a global response, as

illustrated by Cvi-1 and Mt-0 (Figures 2 and 3), to individual gene

responses, and potentially at all steps in between (Table 1).
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Figure 5. Variable Gene-Network Expression Responses in Pairwise Comparisons of Six Accessions with Col-0.

To investigate relationships between gene networks that showed variation in the pairwise ANOVAs, we used the LCF multidimensional gene-network

relationship shown in Supplemental Figure 4D online as a framework for comparison of Col-0 to the other six accessions. We included only those

networks that were induced by SA. For each pair of accessions, the gene networks with statistically significant variation are indicated as black, gray, or

hatched nodes. Black and gray nodes indicate gene networks with differential expression between the two accessions after SA or control treatments,

respectively. Hatched black/gray nodes indicate those networks with differential expression between the two accessions under both treatment

conditions. Black lines connect nodes showing variable expression. Nodes for gene networks that were not significantly different are in white and

connected by gray lines. The statistical identification of pairwise network differences is shown in Supplemental Figure 5 online.
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These results are expected for natural variation of signal trans-

duction, given that many signal transduction pathways are

typically branched; when a signal is initiated or perceived at a

single point, the pathway branches out to control a number of

genes. If the variation occurred in the beginning of the pathway, it

would alter a large group of gene networks. However, if the

variation occurred near the end of the pathway, it would affect a

limited number of gene networks. Thus, genetic variation for SA

response appears to be occurring at multiple levels of the

treatment response pathway. Identifying which genes contain

these polymorphisms will provide a first step in expanding our

mechanistic understanding of responses to SA beyond the Col-0

reference accession. Associating the genetic variation for SA

response within the SA signal transduction network will discern

whether there is a bias as to where natural variation occurs within

the network.

Hyper- and Hypo-SA Response Variation

A potential mechanism to control treatment-dependent gene-

network variation is variability for global responses to a given

level of the treatment. Altered global responses could be either

an elevated (hyper) or subdued (hypo) response throughout the

transcriptome and would alter the ability to identify a statistically

significant response in individual genes within these accessions.

Both the individual-gene and gene-network analyses identified

Mt-0 as a hyper-SA-responsive accession. Mt-0 typically had

greater upregulation of SA-inducible gene networks and more

genes significantly responding to SA with a higher magnitude of

change compared with the other accessions (Figures 2 and 3).

Accession Cvi-1 was identified as hypo-SA-responsive at both

levels. Cvi-1 was shown previously to be hyporesponsive to

methyl jasmonate (MeJa) according to both transcript accumu-

lation and ozone sensitivity (Rao and Davis, 1999; Rao et al.,

2000). MeJa and SA signaling are generally assumed to be

mutually antagonistic, so it is interesting to observe an accession

that is hyporesponsive to both hormones (Kunkel and Brooks,

2002). The polymorphisms leading to the hyper- and hypores-

ponsiveness are likely close to the initial perception of SA given

the global effects on individual gene and gene-network expres-

sion observed in Mt-0 and Cvi-1. Our data suggest that Cvi-1

may be more sensitive, and Mt-0 may be more resistant, to

pathogens for which Arabidopsis uses an SA signal to initiate a

resistance response. To test this hypothesis, these accessions

would need to be challenged with pathogens to evaluate their

actual responses.

Biological Implications of Signaling Variation

A number of potentially interesting molecular observations con-

cerning plant–pathogen interactions exist in this data set. At the

individual gene level, the expression variation of R genes, both

known and unknown, can potentially determine virulent versus

avirulent host–pathogen interactions when a plant is attacked

(Kliebenstein et al., 2006a). Some of the genes involved in

regulating pathogen responses within accession Col-0, BAP1,

NIMIN1, and ATR1, are among those with the most conserved

SA responses across accessions (data not shown; http://elp.

ucdavis.edu). However, the majority of the genes exhibiting SA

responsiveness in the accessions did not have annotated func-

tionalities.

In our view, the results of this study have important implica-

tions on the evolution of signal responses within a species. The

plant’s response to SA is an essential component of plant–

pathogen interactions; a complete inability to respond is likely

lethal to a plant in its natural environment. However, our study

raises the possibility that the SA responses of Arabidopsis are

more plastic than previously thought, given that genes known to

be involved in SA/pathogen defense responses in the Col-0

accession (e.g., PR1, etc.) show dramatic variation at the tran-

script level in this collection of seven accessions (see Supple-

mental Table 1 online). This variation among accessions for gene

expression suggests that this species as a whole contains more

genes that respond to SA than does a single accession. Conse-

quently, each individual accession is limited in its ability to mount

a defense response against all pathogens, whereas the species

has the capacity for a broader array of defense responses. This

difference in SA responsiveness between individuals and the

species suggests that there may be energetic costs of maintain-

ing the ability for a full response within an individual (Cui et al.,

2002, 2005; Raacke et al., 2006; Tang et al., 2006; Veronese

et al., 2006; Zheng et al., 2006). Alternatively, a cost may arise

when a defense response by the plant that defeats one pathogen

enhances the ability of a different pathogen to attack the same

plant. The difference between a species capacity and an indi-

vidual’s capacity to respond to pathogens is well understood at

the qualitative level, where larger numbers of functional R genes

exist within a species than within each individual genotype. Our

results suggest that a similar genetic architecture of natural

genetic variation may occur in a quantitative fashion at signaling

events downstream of pathogen perception.

Implications for Studies Using Reference Accessions

The SA signaling pathway has been primarily studied in Col-0, a

common reference accession, with mutants that cause major

perturbations. This approach, while valuable, does not fully

reveal the complete set of genes or gene networks that are SA

responsive within the Arabidopsis species. For example, gene

network 3000 was identified as significantly decreased in only

Col-0 (Figure 4C). If this network is critical for plant–pathogen

interactions, it will potentially be easier to study in the other

accessions. There are likely to be signaling components and SA-

responsive gene networks present in less-studied accessions

that have been missed due to reliance on Col-0. Our data

demonstrate the potential benefit of including a diverse genetic

representation of a species in studies of key regulatory mecha-

nisms and pathways.

Future Avenues

We identified a considerable level of genetic variation in tran-

script level responses to a key signaling molecule controlling

plant–pathogen interactions. Does transcript variation lead to var-

iation in plant defense responses at the protein and metabolite

levels? Is this variation significant in determining the outcome of
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plant–pathogen interactions? Does this variation impact the

fitness of the plant? To address these questions, it is essential

to determine whether natural variation in SA responses of the

transcriptome alters plant–pathogen interactions. Genetic ap-

proaches, such as analysis of defined genetic populations and

association mapping within the species, can be used to identify

genes controlling the gene-network variation. They also have

potential to determine whether changes in the transcript levels of

these genes alter the plants response to, and fitness under,

pathogen attack. Well-established genetic approaches have the

capability to expand our understanding of plant–pathogen inter-

actions and how genetic variation and selection interact to

modulate essential responses within a eukaryotic species.

METHODS

Plant Material and Experimental Conditions

Seeds of seven accessions of Arabidopsis thaliana (Col-0, Cvi-1, Est,

Kin-0, Mt-0, Tsu-1, and Van-0) were kindly provided by J. Chory (Salk

Institute, San Diego, CA). These accessions can be obtained from the

European Arabidopsis Stock Center (http://arabidopsis.info) and from

The Arabidopsis Information Resource (TAIR; www.arabidopsis.org).

We conducted a preliminary experiment to identify a level of exogenous

SA application that caused transcript accumulation changes without

visible phytotoxicity in any of the accessions tested (described in

Kliebenstein et al., 2006a). The accessions varied in their sensitivity to

exogenous SA application, with concentrations >0.40 mM SA causing

symptoms of macroscopic phytotoxicity in some accessions (see Sup-

plemental Figure 1 online). To identify physiologically relevant SA-

mediated differences in transcript levels rather than differences in toxicity

responses among the accessions, we used a 0.30 mM SA treatment. This

treatment concentration was also found to induce pathogen-responsive

genes (described in Kliebenstein et al., 2006a). Therefore, based on the

results of the preliminary experiment, we chose to use two treatments,

0.30 mM SA plus a zero SA control. Using a factorial experimental design,

we sampled three biological replicates each at three time points, 4, 28,

and 52 hpt, to conduct global assays for ELPs among these seven

accessions (126 samples). The sampling time points were spaced at 24-h

intervals to avoid diurnal effects on measurement of transcript levels.

RNA Isolation and Microarray Analysis of the Transcriptome

RNA was purified from the 126 samples using the TRIzol extraction

procedure followed by purification on RNeasy columns (Qiagen). Labeled

cRNA was prepared and hybridized, according to the manufacturer’s

guidelines (Affymetrix), to whole genome Affymetrix ATH1 GeneChip

microarrays containing 22,746 Arabidopsis transcripts. The GeneChips

were scanned with an Affymetrix GeneArray 2500 scanner and data

acquired via the Microarray Suite software MAS 5.0. The MAS 5.0

algorithm with default scaling was used to obtain gene expression levels

for all data analyses. A quality control analysis was conducted to verify

that each GeneChip was correctly matched to its corresponding biolog-

ical sample, as described previously (Kliebenstein et al., 2006a). The data

for the 126 GeneChips are publicly available from EBI ArrayExpress

under accession number E-TABM-51 and from our project website

(http://elp.ucdavis.edu/).

Statistical Analysis on a per-Gene Basis

A statistical analysis of transcript level abundance was conducted to test

for differential gene expression, which represented potential gene ELPs

among accessions, and to identify accessions with altered transcript

levels resulting from SA treatment. A mixed linear model ANOVA was

used to analyze the GeneChip data (Kliebenstein et al., 2006a). The mixed

linear model partitions the transcript level variation (e.g., accession,

treatment, time points, array, gene, and their respective interaction terms)

for the purpose of testing differential transcript level accumulation (Craig

et al., 2003). Our previous analysis of this data set showed that the

presence of sequence polymorphisms that could possibly impact probe

hybridizations was not a significant source of variation in gene expression

estimates and that transcript accumulation differences among acces-

sions were primarily due to actual ELPs (Kliebenstein et al., 2006a).

For each pair of accessions (21 in total), we performed an ANOVA using

a split-plot mixed linear model with a random array effect. In this model,

yijkgr denotes the transcript level accumulation of gene g, measured from

the accession i under SA treatment j at the time point k for the chip

replication r. The ANOVA model for the log-transformed expression levels

is as follows:

logðyijkgrÞ ¼ mþ Pi þ Sj þ Tk þ ðPSÞij þ ðPTÞik þ ðSTÞjk þ ðPSTÞijk
þ AðijkÞr þGg þ ðPGÞig þ ðSGÞjg þ ðTGÞkg þ ðPSGÞijg
þ ðPTGÞikg þ ðSTGÞjkg þ ðPSTGÞijkg þ eijkgr ;

where i ¼ 1, 2; j ¼ 1, 2; k ¼ 1, 2, 3; g ¼ 1,. . .., 22,746; and r ¼ 1, 2, 3. The

main effects are denoted as P, S, T, and G and represent accession, SA

treatment, time point, and gene, respectively. The array effect (A) is

assumed to be distributed as a normal random variable with mean 0, and

variance sA
2; eijkgr represents the subplot error and is assumed to be

normally distributed with mean 0 and variance se
2. All genes (22,746) were

tested simultaneously in each pairwise ANOVA.

Two null hypotheses were employed to test for transcript level (gene

expression) differences both within and between accessions. The first

hypothesis (H01) tests if a gene was differentially expressed between

treatments within an accession. Specifically, for each gene of each

accession at each time point, H01: Sj þ (SG)jg ¼ Sj9 þ (SG)j’g was tested.

The second hypothesis (H02) was tested to identify potential ELPs. For

each gene under each treatment condition at each time point, H02 tests

differential expression between any two accessions: H02: Pi þ (PG)ig ¼
Pi9 þ (PG)i’g. Comparisons of the t test results between accessions indi-

cated if the gene significantly responded to the SA treatment in one ac-

cession but not in the other. For each of 21 accession pairs, t tests were

used with the type I error adjusted for multiple comparisons using the

false discovery rate (Holm, 1979; Benjamini and Hochberg, 1995). The

accession analysis results were summarized based on the criterion of

the total number of statistically significant differentially expressed genes

as identified by one or both of the two hypotheses H01 and H02. We

compared the number of statistically significant differentially expressed

genes that satisfy this criterion for all 21 parental pairs to determine the

maximum and minimum number of differences.

Analysis of Previously Reported SA-Responsive Genes

We used a collection of 37 genes shown previously to be responsive to SA

treatment and/or pathogen/pest attack (see Supplemental Table 1 online)

to test the SA response within our experiment. At a false discovery rate of

0.05 (Benjamini and Hochberg, 1995), nine of the 37 genes showed an

SA response (i.e., transcript level differences). At a nominal 0.05 level,

the number of genes identified as significantly SA responsive doubled,

and the number of time points for which a gene was identified as

SA responsive increased (see Supplemental Table 1 online). The results

suggest that we are measuring SA responses of transcript levels within

the seven accessions. However, not all of the 37 pathogen/SA-responsive

genes identified in other experiments were detected as significantly SA
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responsive in our experiment. The difference may be due to the moderate

level of exogenous SA used, the absence of pathogens, and/or the

shorter time course employed in our experiment.

Defining Gene Networks by Responses of Col-0 to

Different Treatments

We defined ad hoc defense-related gene networks a priori using publicly

available Affymetrix ATH1 GeneChip Col-0 data generated from patho-

gen challenge experiments. The use of public data sets permitted the

defining of defense-related groups of genes that were coregulated as

putative gene networks independently from our own data set. GeneChip

data from four experiments were considered: interactions with Pseudo-

monas syringae strains (Tao et al., 2003), interactions with Botrytis cinerea

(data from the Integrated Microarray Database System; http://ausubellab.

mgh.harvard.edu/imds/experiment_display.jsp?experiment_id¼7), in-

teractions with viruses (Whitham et al., 2003), and a treatment with

oligogalacturonide (plant cell wall–derived molecule that stimulates de-

fense gene expression during pathogenesis) (data from the Integrated

Microarray Database System; http://ausubellab.mgh.harvard.edu/imds/

experiment_display.jsp?experiment_id¼1).

Gene classification was conducted in the following manner. In each

experiment, characteristic expression profile patterns were identified

using agglomerative hierarchical clustering (Eisen et al., 1998). Clusters

were arbitrarily named, and genes were classified according to these

expression patterns. When data for a particular gene were not available in

a given experiment, the gene was classified into a pattern for genes with

missing data. The expression pattern classes of gene groups were

represented as a string of pattern names from different experiments (see

Supplemental Table 2 online). For example, the class for a gene with

expression pattern 2 in Experiment 1, pattern b in Experiment 2, and

pattern 3 in Experiment 3 is designated as class 2b3. Note that the same

pattern name from different experiments does not imply any biological

relatedness. In total, 134 putative gene networks were identified as

responsive to challenge by plant pathogens or selected elicitors. Given

this definition of the gene networks, the average number of genes per

network was 14.6, ranging from 2 to 385. We selected a subset of gene

networks that contained a minimum of six genes (arbitrarily chosen) to

minimize the influence of individual gene ELPs of large effect on a gene

network (Kliebenstein et al., 2006b). Fifty-four defense-related putative

gene networks (see Supplemental Table 3 online) resulted from this

classification, with an average of 32 genes per gene network and a

maximum of 385 genes.

Statistical Analyses of Gene Networks

We used a mixed linear model ANOVA in SAS to analyze the log2

transcript level (gene expression) data from our factorial experiment to

determine which of the 54 defined gene networks showed a response to

SA in at least one of the seven accessions. In this analysis, we used the

expression values for the genes belonging to each of the gene networks.

The transcript level of gene g from gene network n under SA treatment j at

the time point k for the chip replication r is denoted as ygnjkr. The ANOVA

model for the log2-transformed expression levels is as follows:

log2ðygnjkrÞ ¼ mþ Sj þ Tk þ Nj þGðNÞgnr þ STjk þ SNjn

þ TNkn þ STNjkn þ egnikr ;

where g¼ 6, . . .,385; n¼ 1, . . .,54; j¼ 1, 2; k¼ 1, 2, 3; and r¼ 1, 2, 3. The

main effects are denoted as G, N, S, and T and represent gene, gene

network, treatment, and time point, respectively. The error, egnikr, is

assumed to be normally distributed with mean 0 and variance se
2.

For each of the three time points following treatment, the 95% confi-

dence levels for each gene network were used to determine which gene

networks were significantly different in expression between the control

and SA treatments. The least-square means were used to determine

whether the gene networks were up- or downregulated in response to SA

treatment. This analysis indicated that the vast majority of the 25 SA-

responsive gene networks were only responsive at the 4-hpt time point;

therefore, only the data for 4 hpt was used for further analysis of the gene

networks.

Subsequently, we used the 25 gene networks found to be SA respon-

sive in at least one accession in our experiment to test for variation in

gene-network responses among the accessions. A pairwise comparison

was conducted between Col-0 and each of the other six accessions using

the mixed linear model as described previously (i.e., genes nested within

gene network), except that accession replaced time point as a main

effect. Two different analyses using this same linear model were per-

formed in SAS. The first analysis included the least-square means using

95% confidence intervals. Using an F-test, each gene-network 3 treat-

ment effect was tested for a significant difference between pairs of

accessions. We used the least-square means and 95% confidence

intervals per gene network within each accession for each treatment

condition to determine the accession for which the gene network was

expressed at a higher level. As a second analysis, the least-square means

and standard errors values were used to estimate the average response

for the 25 SA-responsive gene networks.

Network Clustering Analysis

The 25 gene networks that responded to SA treatment in at least one of

the seven accessions in our study were used to conduct network analysis

on our data using LCF (Katagiri and Glazebrook, 2003). LCF uses

nonlinear dimensionality reduction for pattern recognition and translates

the results into a graphical representation. To conduct LCF, the data were

split into two groups: control and treatment. Per group, we obtained the

log2-transformed expression level values of each gene at 4, 28, and 52 hpt

across accessions and replicates and then we normalized them using a

z-score transformation as described by Kliebenstein et al. (2006b). The

z-transformation has been shown to minimize the impact of cis-controlled

transcript polymorphisms on estimates of gene-network expression

(Kliebenstein et al., 2006b). All time points were used to maximize the

similarity of our experimental data to the Col-0 data that included longer

time courses. We then averaged our normalized (z-score) data for all the

genes in a given gene network, after which we subjected the averaged

values for the 25 gene networks to LCF. We visualized and analyzed

the network output of LCF using PAJEK (http://vlado.fmf.uni-lj.si/pub/

networks/pajek; Batagelj and Mrvar, 2002). For visualization, the Fruch-

terman-Reingold three-dimensional option was used.

Using the 25 gene networks, an independent LCF analysis was

conducted for the 16 publicly available Arabidopsis ATH1 data sets

(http://affymetrix.arabidopsis.info) (see Supplemental Table 4 online).

These data sets include biotic stress, elicitor, and stress hormone

treatments of Arabidopsis accession Col-0. For brevity, the collective

data from these 16 data sets are hereafter referred to as 16ATH1 data. All

CEL files were quantile normalized using RMAExpress version 0.4 (http://

rmaexpress.bmbolstad.com/), split into two groups, control (112 arrays)

and treatment (195 arrays), and subsequently analyzed as described

above for comparison to the results of LCF analysis on our data set.

GO Analysis

The GO analysis was performed at two levels: GOslim terms (a high-level

GO term for functional categorization) and GO terms. We performed

the analysis using the GO annotation (download 20051119) from the
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TAIR website (Berardini et al., 2004; http://www.arabidopsis.org/). The

frequency of each classification was obtained for the completely se-

quenced genome and for the genes present in the 25 defined gene

networks that were upregulated and downregulated with SA treatment,

respectively (see Results). We tested each gene list for significant

deviation (P # 0.001) from the expected frequencies for the complete

genome using x2 analysis (Chen et al., 2005).

Promoter Analysis

We used the cis-regulatory element annotation of promoter sequences

of annotated Arabidopsis genes from the AGRIS AtcisDB database

(Davuluri et al., 2003; http://arabidopsis.med.ohio-state.edu/), down-

loaded on November 29, 2005. The frequency of each cis-regulatory ele-

ment was obtained for the complete genome and for the lists of genes from

the upregulated and downregulated gene networks, respectively. We

tested each gene list for significant deviation (P # 0.001) from the expected

frequencies for the complete genome using x2 analysis (Chen et al., 2005).
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