Standard Paper

The phylogenetic position of species of *Lecanora* s. l. containing calycin and usnic acid, with the description of *Lecanora solaris* Yakovchenko & Davydov sp. nov.

Lidia S. YAKOVCHENKO, Evgeny A. DAVYDOV D, Yoshihito OHMURA and Christian PRINTZEN

Abstract: Phylogenetic reconstructions based on ITS/5.8S and mtSSU DNA sequence data suggest a close relationship between two *Lecanora* species containing calycin and usnic acid and the *Lecanora polytropa* group. *Lecanora solaris* Yakovchenko & Davydov sp. nov. is described from the Altai Mountains in Russia. Its gross morphology resembles that of *L. somervellii* asboth species have an effigurate, citrine-yellow thallus (due to the production of calycin). However, *L. solaris* is distinguished from *L. somervellii* by having a small, squamulose to marginally lobate umbilicate thallus and apothecia with a persistent is soon excluded.

Key words: growth form, Lecanora polytropa, Lecanora somervellii, Lecanoraceae, lichenized fungi, molecular phylogeny, secondary metabolites

Accepted for publication 19 September 2018

Introduction

Lecanora (Lecanoraceae, Ascomycota) in its broad sense is defined as a large, cosmopolitan genus comprising nearly 1000 currently recognized species, 250 of which have been described in the last 50 years (Lücking *et al.* 2016). Species of Lecanora are characterized by a crustose (or placodioid) thallus with mostly lecanorine apothecia, Lecanora-type asci and simple hyaline ascospores (Edwards *et al.* 2009) and can be found on rock, bark, wood, soil and detritus. The main phylogenetic lineages within *Lecanora* were recently demonstrated using molecular phylogenetic analyses (Zhao *et al.* 2016), however it remains one of the last genera of lichens that is still largely undivided into more natural units.

Secondary metabolite content has traditionally played an important role in distinguishing taxonomic groups within *Lecanora*, with species-rich groups being characterized by the presence of atranorin or usnic acids (Printzen 2001). The pulvinic acid derivative calycin has so far been found in very few *Lecanora* species as either a major or accessory compound (Obermayer & Poelt 1992; Morse & Ladd 2016). One of these species is *Lecanora somervellii* Paulson from the Himalayas, which is distinctive within the genus because of its bright yellow thallus and apothecia, due to the presence of calycin and usnic acid.

In Russia, 87 species of *Lecanora* have been reported for South Siberia (Urbanavichus

L. S. Takovchenko: Federal Scientific Center of the East Asia Terrestrial Biodiversity FEB RAS, Vladivostok, Russian Federation.

E. A. Davydov (corresponding author): Altai State University - Herbarium (ALTB), Lenin Prosp. 61, Barnaul 656049, Russian Federation. Email: eadavydov@ yandex.ru

Y. Ohmura: Department of Botany, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba 3050005, Japan.

C. Printzen: Botany and Molecular Evolution, Senckenberg Research Institute, Senckenberganlage 25, Frankfurt am Main D-60325, Germany.

2010). During our field studies, we collected a bright yellow, calycin-containing species of *Lecanora* which differs from *L. somervellii* and is described below. The phylogenetic relationships of the two species and their position within *Lecanora* s. 1. were analyzed based on ITS rDNA and mtSSU DNA sequence data.

Materials and Methods

Specimens and phenotype studies

The specimens that constituted the core material for this study were collected by the authors from the Altai Mountains (Siberia) during field trips in 2014 and from the Magadan Region (Russian Far East) in 2012. In addition, herbarium material deposited in GZU and FR was examined.

Morphological and anatomical characters were analyzed by employing standard light microscopy methods. Cross-sections of apothecia and thalli were hand cut and observed after mounting in water. Measurements are given as follows: (smallest value recorded) $(\bar{x} - SD) - \bar{x} - (\bar{x} + SD)$ (largest value recorded), where \bar{x} is the (arithmetic) sample mean, and SD the sample standard deviation. The two extreme values and the sample mean are given to the nearest 0.5 µm.

Secondary metabolites present in the thallus were analysed by means of thin-layer chromatography (TLC) (Culberson & Kristinsson 1970) using solvent system B (hexane: methyl tert-butyl ether: formic acid, 140: 72: 18) (Culberson & Johnson 1982).

Sequences and phylogenetic reconstructions

To test the phylogenetic relationships of calycinproducing species of Lecanora and their relationship to other species represented in GenBank (www.ncbi.nlm. nih.gov), the ITS region of the nrDNA (ITS1, 5.8S and ITS2) and the mitochondrial small subunit of the ribosomal RNA (mtSSU) were sequenced from eight specimens (Table 1). These markers were chosen because they were also used in the most comprehensive analyses of Lecanora by Zhao et al. (2016) and many sequences are present in GenBank, whereas sequences from other loci are only available for very few species. DNA extraction, amplification and sequencing followed Davydov & Yakovchenko (2017). Sequences were aligned with those of 75 other species preferably representing type material, from Zhao et al. (2016) using MAFFT in Geneious 6.0 (Biomatters Ltd., New Zealand) with default settings (auto algorithm selection, gap open penalty 1.53, offset 0.123) and manually optimized. Before combining sequences into a joint ITS + mtSSU data matrix, the unambiguously alignable regions of 81 specimens for which both marker regions were obtained were used for calculations using RAxML 8.0.26 (Stamatakis 2014) to generate single-marker phylograms (not shown), which were tested for conflicts. The cladograms were similar regarding well-supported clades

and lacked conflicts, therefore all sequences were combined into one matrix consisting of 1159 sites and used for RAxML and Bayesian analyses. The optimal substitution model was inferred initially assuming four independent subsets: ITS1, 5.8S, ITS2 and mtSSU using PartitionFinder version 1.1.1 (Lanfear et al. 2012). The Kimura 2-parameter model with a proportion of invariable sites (K80 + I) was inferred for the 5.8S partition. ITS1 and ITS2 were inferred to follow the same general time reversible model with site-specific rates modelled by a gamma-distribution and with a proportion of invariable sites (GTR+I+G). The Hasegawa-Kishino-Yano model with a proportion of invariable sites and gammadistributed, site-specific rates (HKY+I+G) was inferred as optimal for mtSSU. Bayesian inference with the Markov chain Monte Carlo (BMCMC) method (Larget & Shimon 1999) was performed using MrBayes 3.2.3 (Ronquist et al. 2012). We applied the above-mentioned substitution models, a variable rate prior and an unconstrained exponential branch-length prior with a mean of 0.12. The mean of the branch-length prior was calculated based on Maximum Likelihood (ML) tree reconstructions using the procedure described by Ekman & Blaalid (2011). Three parallel analyses each with 6 incrementally heated chains using the default heating factor of 0.2 were run for 40 million generations; every 200th generation was sampled until the average standard deviation of split frequencies had dropped to 0.015. This was the case after 20 million generations. The first 50% trees was discarded as burn-in and a 50% majority-rule consensus tree was calculated from the remaining trees of the three runs with the sumt command implemented in MrBayes 3.2.3. The most likely tree and 1000 bootstrap replicates were calculated using RAxML 8.0.26 (Stamatakis 2014) by raxmlGUI software version 1.3.1 (Silvestro & Michalak 2012), applying the GTRGAMMA model of substitution to the subsets. Species of Ramboldia were used as an outgroup because this genus has been shown to be closely related to Lecanora s. l. (Zhao et al. 2016). Bootstrap support values and posterior probabilities from the BMCMC analysis were mapped onto the ML tree from RAxML because the Bayesian 50% majority-rule consensus tree had the same topology.

Results

ITS and mtSSU sequences were successfully obtained from four specimens of the putative new species, described below as *Lecanora solaris*. The phylograms are combined in Fig. 1. Four cladogram sequences of *L. solaris* are combined in a well-supported clade (MrBayes: 1·0 PP; RAxML: 100% BS). Two sequences of *L. somervellii* cluster separately in a well-supported sister clade (1·0 PP, 100% BS). Both species appear as closely related to *L. polytropa* and *L. intricata* (1·0 PP, 89% BS),

		GenBank Accession number	
Species	Collection location and number or reference	mtSSU	ITS
Japewia tornoensis	Canada, Printzen s. n. (Hb. BG)	HQ660559	HQ650656
Lecanora achroa	Papong 6458 (F)	JQ782663	JN943714
L. argopholis	Austria, Tirol, Printzen 12558 (FR-0220001)	MH520108	MH512978
L. allophana	Sweden, Ekman 3434	AY567710	AF070031
L. austrotropica	Papong 6047 (F)	JQ782665	JQ782706
L. caesiorubella	Lumbsch 19094a (F)	JQ782666	JN943722
L. californica	Lumbsch 19914a (F)	JQ782668	JQ782707
L. campestris	Sweden, Arup L97370 (LD)	DQ787362	AF159930
L. carpinea	Austria, Arup L97007 (LD); Sweden, Arup L03192 (LD)	DQ787364	AY398710
L. cinereofusca	Lendemer 35007 (NY-1808085)	KP224464	KP224469
L. conizaeoides	AFTOL-ID 1858	KJ766418	AF189717
L. elatinoides	Lumbsch 19992d (F)	JQ782669	JQ782709
L. farinacea	HTL19971b(F)	JQ782670	JN943726
L. flavopallida	Lumbsch 19972d	JN943723	JQ782673
L. flavoviridis	Papong 653	JQ782675	JQ782711
L. formosa	ZX 20129045-2	KT453819	KT453771
L. gangaleoides	Lumbsch 19923a (F)	JQ782676	JQ782712
L. helva	Lumbsch 19809h (F)	JQ782677	JQ782713
L. horiza	no data	KT453821	KT453772
L. hybocarpa	Lumbsch s. n. (F)	EF105417	EF105412
L. imshaugii	HTL19273b (F)	JQ782681	JQ782717
L. intricata	Austria, Arup L97031 (LD)	DQ787346	AF070022
L. intumescens	Norway, Ekman 3162 (BG)	AY300892	AY541254
L. leproplaca	Lumbsch 19558m (F)	JQ782683	JQ782718
L. leprosa	Papong 6735 (F)	JQ782682	JQ782721
L. pacifica	Lumbsch 19901c (F)	JQ782686	JQ782722
L. paramerae	Lumbsch s. n. (F)	EF105418	EF105413
L. phaeocardia	Papong 3492 (F)	JQ782687	JQ782724
L. plumosa	Papong 6965 (F)	JQ782690	JQ782726
L. polytropa 1	AFTOL-ID1798	-	HQ650643
L. polytropa 2	Austria, Grube (GZU); Sweden Arup L03568 (LD)	DQ787348	
L. pseudogangaleoides subsp. verdonii	HTL19103a (F)	JQ782691	JQ782727
L. queenslandica	Lumbsch 19113 (F)	JQ782692	JQ782728
L. saxigena	Lendemer 33186 (NY-1684507)	KP224461	KP224468
L. solaris 1	Russia, Republic of Altai, <i>Davydov</i> (16532) & <i>Yakovchenko</i> (LE-L-13174, holotype)	MH520107	MH512982
L. solaris 2	Russia, Republic of Altai, <i>Davydov</i> (14333) & <i>Yakovchenko</i> (ALTB, paratype)	MH520109	MH512981
L. solaris 3	Russia, Republic of Altai, <i>Davydov</i> (14335) & Yakovchenko (ALTB, paratype)	MH520110	MH512983
L. solaris 4	Russia, Republic of Tuva, <i>Davydov</i> (14336) & <i>Yakovchenko</i> (ALTB, paratype)	MH520111	MH512984
L. somervellii 1	Russia, Magadan Region, Ohmura (10109), Yakovchenko & Zheludeva (TNS-L-125468)	MH520113	MH512979
L. somervellii 2	Russia, Magadan Region, Ohmura (10111), Yakovchenko & Zheludeva (TNS-L-125469)	MH520114	MH512980
L. subimmergens	Papong 6431 (F)	JQ782696	JQ782732
L. subimmersa	Lumbsch 19103b (F)	JQ782697	JQ782733
L. sulphurea	Sweden, Arup L96006, L01823 (LD)	DQ787356	
L. symmicta	CP 9999a	KJ152466	AF070024
L. toroyensis	Papong 7197 (F)	JQ782698	JQ782734

TABLE 1. Lichen species together with specimen information and their GenBank Accession numbers used in the phylogenetic					
analyses of calycin-producing species of Lecanora.					

(Continued)

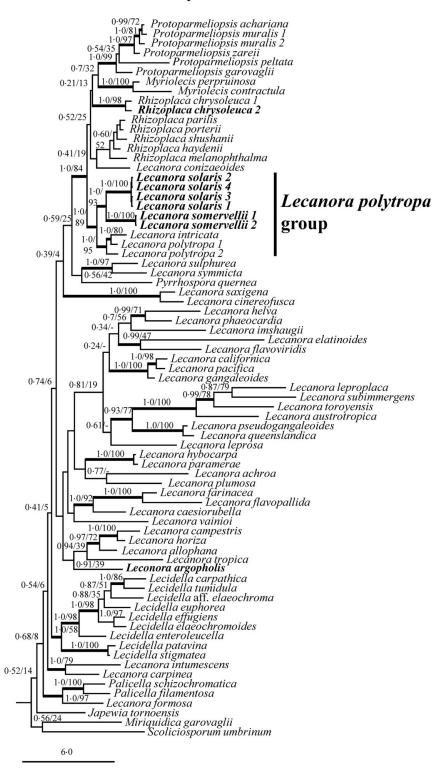
THE LICHENOLOGIST

Species	Collection location and number or reference	GenBank Accession number	
		mtSSU	ITS
L. tropica	Papong 6440 (F)	JQ782699	JN943720
L. vainioi	Papong 7120 (F)	JQ782701	JN943716
Lecidella aff. elaeochroma	ZX 20141264-2	KT453826	KT453752
L. carpathica	ZX 20140367-2	KT453831	KT453741
L. effugiens	ZX 20141269-2	KT453832	KT453748
L. elaeochromoides	ZX 20141142	KT453836	KT453750
L. enteroleucella	ZX YN0201	KT453838	KT453757
L. euphorea	ZX XL0351-2	KT453843	KT453745
L. meiococca	Sweden, Ekman 3101 (BG)	AY300893	AF517929
L. patavina	ZX 20140501-2	KT453845	KT453767
L. stigmatea	ZX 20141243	KT453847	KT453762
L. tumidula	ZX XL0009	KT453854	KT453736
Miriquidica garovaglii	Norway, <i>Ekman</i> s. n.	AY567711	KF562188
Myriolecis contractula	AFTOL-ID 877	DQ986898	HQ650604
M. perpruinosa	Austria, Wilflinget et al., 1224 (GZU), Arup L97320 (LD)	DQ787344	AF070025
Palicella filamentosa	no data	KJ152468	GU480099
P. schizochromatica	USA, Hauck s. n. (Hb. Hauck)	HQ660555	HQ650652
Protoparmeliopsis achariana	Arup L03216 (LD)	DQ787342	AF070019
P. garovaglii	Leavitt 089 (BRY-C)	KT453818	KT453728
P. muralis 1	AFTOL-ID 1882	KJ766466	KC791770
P. muralis 2	Leavitt 143 (BRY-C)	KT453822	KT453726
P. peltata	no data	KT453860	KT453722
P. zareii	B. Zarei-Darki (1111) (KW)	KP059056	KP059049
Pyrrhospora quernea	Sweden, Ekman 3019 (BG)	AY300908	AF517930
Ramboldia arandensis	Elix 28721 (CANB)	EU075527	EU075541
R. brunneocarpa	<i>Elix</i> 36756 (F)	EU075528	EU075542
R. laeta	Elix 36817 (F)	EU075530	EU075544
R. petraeoides	<i>Elix</i> 36816 (F)	EU075531	EU075545
R. russula	Lücking 17640 (F)	EU075533	EU075547
R. sanguinolenta	<i>Elix</i> 28835 (F)	EU075534	EU075548
R. stuartii	Elix 28664 (F)	EU075535	EU075549
Rhizoplaca chrysoleuca 1	BRY 55000	KT453856	HM577233
R. chrysoleuca 2	Russia, Republic of Tuva, Davydov (16455) & Yakovchenko	MH520112	MH512985
R. haydenii	Leavitt 727 (BRY-C)	KT453857	
R. melanophthalma	MS014624 (H)	KT453858	JX948275
R. parilis	no data	KT453859	HM577309
R. porterii	no data	KT453861	
R. shushanii	no data	KT453862	HM577284
Scoliciosporum umbrinum	Norway, Ekman 3005	AY567719	AY541277

TABLE 1. (continued).

with which they form a well-supported clade (the *Lecanora polytropa* group) sister to *Protoparmeliopsis*, *Rhizoplaca*, *Myriolecis* and *L. conizaeoides* (1.0 PP, 84% BS).

Lecanora solaris Yakovchenko & Davydov sp. nov.


MycoBank No.: MB 824845

Similar to *L. somervellii* but differs by its squamulose growth form and plane to moderately convex apothecial discs with a distinct, persistent thalline margin.

Type: Russia, Republic of Altai, Kosh-Agachsky District, Sailjugem Range, right bank of the Bayan-Chagan River 2·5 km S of its junction with the Karasu River, on siliceous rocks, 49°31′55″N, 88°46′45″E, 2630 m a.s.l., 15 June 2014, *E. A. Davydov* 16532 & *L. S. Yakovchenko* (LE-L-13174—holotype; ALTB—isotype).

(Fig 2B-F)

Thallus squamulose, \pm circular, up to 10– 15 mm diam.; squamules (0·2–)0·7–1·3–1·9 (–3·5) mm diam., crowded, moderately to strongly convex, rounded initially but soon becoming incised and irregular in outline,

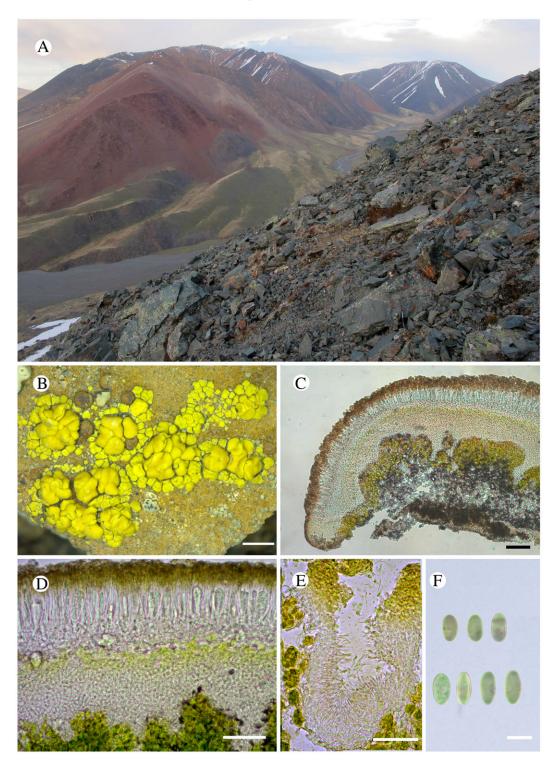
sometimes peltate. Surface bright yellow, shiny, initially smooth, later strongly rugose, epruinose. Vegetative propagules absent. Cortex $42.5-57.5 \mu m$, of compacted irregularlyoriented hyphae, up to $3.5 \mu m$ thick, with an elongate lumina becoming rounded towards the uppermost part of the cortex and covered by cortical crystals. Cortical crystals \pm rounded, irregular in shape, angular or bacilliform. Algal layer continuous, $135-215 \mu m$ thick, algae chlorococcoid, $17.5-22.5 \mu m$ diam.; medulla of loose hyphae of up to 5 μm diam.

Apothecia lecanorine, common, concentrated in centre of the thallus, at first arising singly on areoles that are then obscured, crowded to overlapping (1-4 apothecia per squamule), immersed initially soon becoming sessile and strongly constricted at the base, (0.4-)0.9-1.2-1.5(-2.0) mm diam., with raised margin; disc initially plane, later moderately convex, initially smooth, later smooth or scarcely rugose, rounded to irregular in outline, concolorous with the thallus to ochre-yellow, epruinose; thalline margin initially distinct, later disappearing, concolorous with disc, somewhat shiny, epruinose, $(62.5-)79.0-97.0-115.0(-125.0) \mu m$ thick. Cortex of thalline margin same as the thalline cortex; medulla reaching into the thalline margin, consisting of loose hyphae of up to $5 \,\mu m$ diam., with green algal cells of up to 22.5 µm diam. Hymenium (42.5-)48.0-52.0-55.0 (-57.5) µm tall, hyaline; subhymenium (12.5–) $20.5-27.0-33.5(-42.5) \,\mu m$ tall, hyaline, with oil drops; epihymenium (12.5-)13.5-18.0-22.0 $(-25.0) \,\mu\text{m}$ tall, medium brown, densely incrusted by crystals, which penetrate down into the hymenium. Hypothecium (50.0-) 70.0-91.5-113.5(-137.5) µm tall, hyaline with sulphur yellow pigment (calycin) in uppermost part, opaque, composed of compact, elongated, irregularly-oriented hyphae of 2.5-3.5 µm

diam.; *paraphyses* simple to branched near the tips and in the mid-hymenium, septate, $2\cdot0-2\cdot5 \ \mu\text{m}$ wide, with clavate tips $3-5 \ \mu\text{m}$ wide. *Asci* clavate, 8-spored, $(32\cdot5-)36\cdot5-40\cdot5-44\cdot0$ $(-51\cdot5) \times (12\cdot5-)14\cdot0-15\cdot0-16\cdot5(-19\cdot0) \ \mu\text{m}$, *Lecanora*-type; *ascospores* simple, hyaline, ellipsoid to narrowly ellipsoid, $(7\cdot5-)10\cdot0-11\cdot5-13\cdot0$ $(-14\cdot0) \times (4\cdot5-)5\cdot0-5\cdot5-6\cdot0(-7\cdot5) \ \mu\text{m}$.

Pycnidia rare, 90–110 µm diam., immersed, walls colourless, conidiogenous cells elongate-ampulliform; *conidia* filamentous, broadly falcate, colourless, simple, $(9.5-)12.0-16.0-20.0(-22.0) \times c. 0.8$ µm.

Chemistry. Thallus K+ weakly reddish, KC-, C-, Pd-; calycin as well as usnic and rangiformic acids by TLC.


Etymology. The name refers to the bright yellow "sunny" colour of the lichen.

Substratum and ecology. The species grows on hard volcanic or weakly calcareous overhanging rocks in open pioneer communities within high mountain vegetation at elevations between 2630–3100 m (Fig. 2A). The species was scarce in this habitat. The following species co-occurred with Lecanora solaris: Acarospora cf. elevata H. Magn., Acarospora sp., Aspicilia sp., Lecanora sp., Protoparmeliopsis peltata (Ramond) Arup et al., Carbonea vorticosa (Flörke) Hertel.

Distribution. Lecanora solaris is so far known only from the Altai Mountains where it was collected in the Sailjugem Range and the Mongun-Taiga massif.

Notes. The examination of the neotype of L. somervellii revealed that L. solaris differs in the thallus morphology: L. somervellii has a large, well-developed, placodioid thallus and

FIG. 1. The phylogenetic relationships of calycin-producing species of *Lecanora* and their relationship to other species represented in GenBank using ITS and mtSSU sequences. The reliability of each branch was tested by Maximum Likelihood (ML) and Bayesian methods. Numbers at tree nodes indicate bootstrap values of Bayesian inference with the Markov chain Monte Carlo (BMCMC) posterior probabilities (left of slash) and ML (right of slash). Thicker branches indicate BMCMC posterior probability values ≥ 0.95 or ML bootstrap values $\geq 70\%$. GenBank Accession numbers are given in Table 1. Sequences produced in the present study are marked in bold. Outgoup not shown.

lecanorine apothecia which soon become strongly convex with an excluded thalline margin; whereas L. solaris has a squamulose thallus with flattened to moderately convex, lecanorine apothecia with a persistent thalline margin. According to our field observations in the Magadan Region the two species differ also in their habitat; L. somervellii occurs on sunny exposed siliceous rocks while L. solaris favours shaded, weakly calcareous rocks. Morphologically, L. solaris also resembles species of Pleopsidium but can easily be distinguished anatomically by being 8-spored and having Lecanora-type asci. Sterile samples differ from *Pleopsidium* by the small size and shape of the thallus, which is never placodioid and large, as well as by its habitat: Pleopsidium species occur on exposed, well-insolated surfaces of siliceous rocks.

We observed two different morphs of L. solaris: squamulose (typical) and umbilicate (ED 14336 & LY). The umbilicate morph differs in their margin having a lobate, umbilicate (not uniformly squamulose) growth form; a smooth to strongly echinate (not rugose) thallus surface and apothecial discs that become more strongly rugose with age. Both morphs were collected at the same locality and under similar ecological conditions. The ITS sequences of both morphs were identical but the mtSSU sequence of the umbilicate morph (MH520111) differs by five substitutions from that of the squamulose morphs, including the specimen from the same locality. The short and unsupported branches within the L. solaris clade, however, indicate that these differences reflect intraspecific variability. The mtSSU sequence of the umbilicate morph also includes an insertion at position 638 (ACCC-GCG-GCAAAGC ATCAGTGAGCC) which is lacking in all sequences of squamulose specimens, and very similar to the homologous part of the sequence of Rhizoplaca chrysoleuca (Sm.) Zopf (ACCTTGCGTTGCAAAGCATCAG

TGAGTGCC: differences marked in bold). However, this insertion is extremely variable among *Lecanora* and *Rhizoplaca* species and was excluded from the alignment.

Additional specimens examined. Russia: Republic of Altai: Kosh-Agachsky District, Sailjugem Range, watershed of Bayan-Chagan and Sarzhemoty Rivers, 4 km S of its junction, 49°32′00″N, 88°45′01″E, 2750 m a.s.l., in crevices of rocks, 2014, E. A. Davydov 14333 & L. S. Yakovchenko (ALTB); ibid., right bank of the Bayan-Chagan River, 2.5 km S of its junction with the Karasu River, 49°32′01″N, 88°46′36″E, 2680 m a.s.l., in crevices of rocks, 2014, E. A. Davydov 14334 & L. S. Yakovchenko (ALTB). Republic of Tuva: Mongun-Taiginsky District, Mongun-Taiga massif, headwaters of the Mugur River, 27.5 km W of Mugur-Aksy, 50°18'22"N, 90°04'26"E, 3000-3100 m a.s.l., alpine meadows and mountain tundras with stones, on rocks, 2014, E. A. Davydov 14335, 14336 & L. S. Yakovchenko (ALTB).

Lecanora somervellii Paulson

J. Bot., Lond. **63:** 192 (1925); type: Nepal, Langtang area, huge rocks near Kyangjin, 3750 m, 8–10 September 1986, *J. Poelt* N86-L257 [GZU—neotype!, selected by Obermayer & Poelt, *Lichenologist* **24:** 112 (1992)].

This species is characterized by its effigurate, citrine-yellow thallus (due to the production of calycin). The specimens collected from the Magadan Region (Yakovchenko *et al.* 2018) are a good match fto the protologue and description by Obermayer & Poelt (1992). The chemical substances detected by TLC were calycin, usnic acid, rangiformic acid, norrangiformic acid, and an unidentified fatty acid (Rf class 3 in solvent B). *Lecanora somervellii* is known from the Himalayas, both in Nepal and Tibet, where it grows on steep to overhanging sides of very hard siliceous rocks at an altitudinal range of *c.* 3750 m to *c.* 5540 m (Paulson 1925; Obermayer& Poelt 1992).

Specimens examined. Nepal: Central Himalaya: Langtang area, huge rocks near

FIG. 2. A–F, Lecanora solaris; A, type locality, Sailjugem Range, right bank of the Bayan-Chagan River; B, holotype (LE-L-13174); C, section of apothecium; D, section of apothecium showing clearly the layer of calycin; E, pycnidia with broadly falcate conidia; F, ascospores. Scales: B = 2 mm; C = 100 µm; D = 50 µm; E = 25 µm; F = 10 µm.

Kyangjin, elev. c. 3750 m, 8–10 September 1986, *J. Poelt* N86-L257 (GZU).—**Russia:** *Magadan Region*: small mountain c. 120 km NE of Atoka, 61°11'47·7"N, 153°58'10·5"E, elev. 1130 m, on rock, 11 August 2012, *Y. Ohmura* 10109, 10111, *L. S. Yakovchenko* & E. Zheludeva (TNS-L-125468, 125469).

Discussion

A similarity between Lecanora somervellii and L. polytropa f. illusoria (Ach.) Leight. was already noted in the protologue of L. somervellii by Paulson (1925), who nevertheless assumed a closer relationship for his new species with Aspicilia. Our phylogeny based on ITS and mtSSU and the six-gene phylogeny of Zhao et al. (2016) both support the hypotheses that the calycin-producing L. solaris and L. somervellii represent sister taxa within the L. polytropa-group and that Myriolecis, Protoparmeliopsis, Rhizoplaca and the L. polytropa-group are closely related to each other. Apart from showing a close relationship between L. formosa and Palicella (also inferred by Zhao et al. (2016)), our phylogeny does not allow further conclusions on relationships the within Lecanora s. l. because its backbone is not supported.

The discovery of L. solaris in the Altai Mountains returns us to the problem of the neotypification of L. somervellii by Obermayer & Poelt (1992). As the holotype of L. somervellii was lost (or at least not found) and Paulson's original material was missing, a neotype was selected for L. somervellii from the material collected by Poelt in Nepal in 1986. The neotype is consistent with the protologue of the species published by Paulson (1925), in which the unique citrine-yellow colour of L. somervellii and its 8-spored asci are noted. However, other characters of the neotype material were not consistent with the protologue (Obermayer & Poelt (1992)). For example, Paulson described the thallus of L. somervellii as squamulose with a white lower surface and the apothecia as lecanorine, plane to immersed or slightly convex and with a persistent thalline margin. The neotype, on the other hand, has a distinctly placodioid thallus with closely attached marginal lobes and apothecia with a thalline margin only in the juvenile stage. Hence, morphologically *L. solaris* better fits the original description of Paulson (1925). However, since Paulson's original material is not available, we must follow the neotypification by Obermayer & Poelt (1992). Furthermore, no material similar to *L. solaris* has as yet been found in the Himalayas.

Among the yellow-coloured Lecanora species, only L. somervellii and L. solaris are so far known to contain calycin and usnic acid. Other species, such as Lecanora sulphurella Hepp, L. fulvastra Kremp. and L. inaurata C. A. Morse & Ladd, either contain only usnic acid as a yellow pigment or produce atranorin and/or chloroatranorin as major secondary compound(s) in addition to calycin (Follmann & Huneck 1976; Leuckert & Mayrhofer 1985; Lumbsch 1994; Morse & Ladd 2016).

This and previous phylogenetic studies (Peréz-Ortega et al. 2010; Zhao et al. 2016), as well as phenotypic characters (Obermayer & Poelt 1992; Arup & Grube 1998), indicate that Lecanora species with calycin and usnic acid, and the L. polytropa group, do not belong in Lecanora s. s. Our data suggest that L. somervellii and L. solaris should be included in the L. polytropa group sensu Zhao et al. (2016). Apart from the calycin production, both species appear phenotypically similar to L. polytropa in their concave or plane, marginate, broadly attached apothecia arising singly on areoles and soon becoming convex, immarginate, constricted below and clustered in the centre of the thallus obscuring the areoles. Well-developed thalli of L. *polytropa* may sometimes form squamulose thalli similar to those of L. solaris. The L. polytropa group in this new sense is strongly supported as monophyletic and probably requires taxonomic recognition at the generic level. However, additional data are necessary to fully understand the species composition of this clade before it can be accepted as a separate genus.

AUTHOR ORCIDs

Evgeny A. Davydov 0000-0002-2316-8506.

We thank Dr W. Obermayer (GZU) for his help with herbarium specimens of Lecanora somervellii. The authors are grateful to the following colleagues for organizing expeditions: Dr G. E. Insarov and Dr A. N. Kuksin to the Ubsunur Hollow Biosphere Reserve (Tuva), and D. G. Malikov to Sailugemsky National Park. We also thank the directors and staff of the above-mentioned institutions for their great support during these expeditions. We are grateful to two anonymous reviewers and Dr Stefan Ekman for their valuable comments and suggestions, and to Dr Alan Fryday for improving the text. This paper is a result of the project "Lecanomics: New ways of species detection and recognition in a ubiquitous group of lichens" (DFG PR567/19-1). The research of LY was partly supported by the Russian Foundation of Basic Research no. 15-34-50213.

REFERENCES

- Arup, U. & Grube, M. (1998) Molecular systematics of Lecanora subgenus Placodium. Lichenologist 30: 415–425.
- Culberson, C. F. & Johnson, A. (1982) Substitution of methyl tert.-butyl ether for diethyl ether in the standardized thin-layer chromatographic method for lichen products. *Journal of Chromatography* 238: 483–487.
- Culberson, C. F. & Kristinsson, H. A. (1970) A standardized method for the identification of lichen product. *Journal of Chromatography* 46: 85–93.
- Davydov, E. A. & Yakovchenko, L. S. (2017) *Rhizocarpon* smaragdulum, a new monosporic yellow-thalline species and some additional species of the genus *Rhizo*carpon from the Altai Mountains (Siberia). *Lichenologist* 49: 457–466.
- Edwards, B., Aptroot, A., Hawksworth, D. L. & James, P.
 W. (2009) Lecanora. In The Lichens of Great Britain and Ireland (C. W. Smith, A. Aptroot, B.
 J. Coppins, A. Fletcher, O. L. Gilbert, P. W. James & P. A. Wolseley, eds): 465–502. London: British Lichen Society.
- Ekman, S. & Blaalid, R. (2011) The devil in the details: interactions between the branch-length prior and likelihood model affect node support and branch lengths in the phylogeny of the *Psoraceae*. *Systematic Biology* **60**: 541–561.
- Follmann, G. & Huneck, S. (1976) Mitteilungen über Flechteninhaltsstoffe CXII. Neue Flechtenanalysen 5. *Philippia* 3: 9–19.
- Lanfear, R., Calcott, B., Ho, S. Y. W. & Guindon, S. (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. *Molecular Biology and Evolution* 29: 1695–1701.

- Larget, B. & Simon, D. (1999) Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. *Molecular Biology and Evolution* 16: 750–759.
- Leuckert, C. & Mayrhofer, H. (1985) Chemische Flechtenanalysen IV. *Herzogia* 7: 99–104.
- Lücking, R., Hodkinson, B. P. & Leavitt, S. D. (2016) The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota – approaching one thousand genera. *Bryologist* **119**: 361–416.
- Lumbsch, H. T. (1994) Calycin in Lecanora fulvastra. Lichenologist 26: 94–96.
- Morse, C. A. & Ladd, D. (2016) Lecanora inaurata, a new member of the L. subfusca group from central North America. Lichenologist 48: 377–385.
- Obermayer, W. & Poelt, J. (1992) Contributions to the knowledge of the lichen flora of the Himalayas III. On *Lecanora somervellii* Paulson (lichenized Ascomycotina, *Lecanoraceae*). *Lichenologist* 24: 111–117.
- Paulson, R. (1925) Lichens of Mount Everest. Journal of Botany 63: 189–193.
- Pérez-Ortega, S., Spribille, T., Palice, Z., Elix, J. A. & Printzen, C. (2010) A molecular phylogeny of the *Lecanora varia* group, including a new species from western North America. *Mycological Progress* 9: 523–535.
- Printzen, C. (2001) Corticolous and lignicolous species of Lecanora (Lecanoraceae, Lecanorales) with usnic or isousnic acid in the Sonoran Desert Region. Bryologist 104: 382–409.
- Ronquist, R., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenbeck, J. P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. *Systematic Biology* **61**: 539–542.
- Silvestro, D. & Michalak, I. (2012) raxmlGUI: a graphical front-end for RAxML. Organisms Diversity and Evolution 12: 335–337.
- Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* **30**: 1312–1313.
- Urbanavichus, G. P. (2010) A Checklist of the Lichen Flora of Russia. St. Petersburg: Nauka.
- Yakovchenko, L. S., Zheludeva, E. V., Ohmura, Y. & Davydov, E. A. (2018) *Lecanora somervellii* – new lichen for Russia from Magadan Region. *Turczaninowia* 21 (4): 35–39. [in Russian]
- Zhao, X., Leavitt, S. D., Zhao, Z. T., Zhang, L. L., Arup, U., Grube, M., Pérez-Ortega, S., Printzen, C., Śliwa, L., Kraichak, E., et al. (2016) Towards a revised generic classification of lecanoroid lichens (*Lecanoraceae*, Ascomycota) based on molecular, morphological and chemical evidence. Fungal Diversity 78: 293–304.