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In the Late Triassic–Early Jurassic, forests dominated by Podozamites—an apparently deciduous, shoot-dropping
conifer with broad, multi-veined leaves—were extensive in what were the mid-latitudes of eastern Asia.
Podozamiteswas the only conifer in many forests of this region, and at times appeared to have formed an almost
mono-specific vegetation. Podozamites appears to have been little-effected through the Triassic–Jurassic transi-
tion, but responded to climate changes later in the Jurassic. The Chinese region progressively dried through the
Middle Jurassic and aridity had developed in some areas by the Late Jurassic–Early Cretaceous. The centre of dis-
tribution of Podozamites shifted north, to the Siberian region, where conditions remained wet. There, it typically
coexisted with conifers having a diverse range of smaller leaf morphologies.
By the late Albian angiosperms had arrived in the Siberian area and risen to dominance. Some time after this
event, Podozamites became extinct. This is significant, as it represents the permanent extinction of a unique
lifestyle—a deciduous, broad-leaved and multi-veined conifer.
The broad history of Podozamites raises some interesting issues:

1. The existence of a large, dominantly deciduous vegetation atmid-latitudes in the Late Triassic–Early Jurassic
is little discussed.

2. It is unexpected that as broad-leaved angiosperms took over, amongst the conifers it was the broad leaved,
multi-veined Podozamites that became extinct. This is the morphology that might have been expected to
compete with the apparently more shade-forming angiosperms. Instead, it was the smaller leaved and
single-veined conifers that remained to coexist with the angiosperms.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Most extant conifers have foliage that is relatively small, and single-
veined. These may be of different shapes (e.g. needle-like or flattened),
or disposed in various ways on the shoot (e.g. spirally or in a flattened,
pinnate way), but there are exceptions (e.g. Agathis, Nageia, and
Phyllocladus). Most extant conifers are also evergreen, though again,
there are exceptions (e.g.Metasequoia and Taxodium). Leaf morphology
is generally (not just conifers) understood to reflect lifestyle and/or cli-
matic constraints. For example, large leaves tend to reflect a warm and
humid environment (Dolph and Dilcher, 1980; Parkhurst and Loucks,
1972; Taylor, 1975), whereas shape can reflect how a leaf was carried
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on a branch (Givnish, 1979, 1984). The various types of conifer leaf-
shape/shoot-type can all be seen as essentially different light-
gathering strategies, and in the broader sense (i.e. whether they were
deciduous or evergreen) as life-style. In the Mesozoic, there appears to
have been a distinct and very successful conifer life-style that is now ex-
tinct. This was a conifer that had broad, flattened, multi-veined leaves,
and was deciduous. The most common name for this kind of fossil is
Podozamites. The disappearance of this previously successful life-style
should be thought-provoking and the phenomenon may contribute to
broader issues concerning conifer and angiosperm distribution.

Podozamites was established by Braun (1843) and now tends to be
used in two different ways—one is as a pure morphogenus simply de-
scribing a fossil (presumed) conifer shoot with multi-veined leaves.
Harris (1969) tried to clarify its use in this sense. In this broad sense,
Podozamites is represented today by Agathis (Araucariacae) and Nageia
(Podocarpaceae). Harris (1935) warned against placing isolated fossil
leaves into either Podozamites or Phoenicopsis. In the absence of any
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cuticle details, or if the specimens are only of single, unattached leaves,
they are better referred to as Desmiophyllum. Isolated material of this
form could, therefore, be either conifer or ginkgophyte.

Podozamites is also used in a more restricted sense—as a ‘genuine’
Linnaean genus. For example, in the Late Triassic–Late Jurassic of the
Northern Hemisphere, Podozamites is regularly associated with the
reproductive structures Cycadocarpidium and Swedenborgia, and some
other less common forms (e.g. Oishi and Takahasi, 1936; Harris, 1937;
Anderson, 1978). Assuming that they were connected, in this sense
Podozamites can be viewed as a genus of a particular family, for
example the Podozamitaceae, or more recently of the Voltziaceae or
Podocarpaceae, but the taxonomy remains unsettled (Clement-
Westerhof, 1987; Miller, 1999; Escapa et al., 2010; Dietl and
Schweigert, 2011). Unfortunately, informative leaf cuticle has beenpub-
lished only from about four species of Northern Hemisphere
Podozamites, as it is extremely thin. Two of these are from Greenland
(Harris, 1935) and two from Siberia (Doludenko, 1967; Bugdaeva,
1995). Three of the species have a remarkable transverse orientation
of the stomata that is reminiscent of Taxodium, although Podozamites
does not have differentiated subsidiary cells. Recently, well-preserved
dispersed Podozamites cuticle has been prepared directly from coal in
the Barremian Chagdamyn Formation, of the Bureya Basin, Russian Far
East (Fig. 1). However, most Eurasian workers, who have attempted to
retrieve Podozamites cuticle, have remarked on how delicate it is. It is
generally concluded that Podozamites in this narrow sense, was decidu-
ous, and abcissedwhole shoots, a view consistentwith it being especial-
ly targeted by insect herbivores (Ding et al., 2015). The broad-leaved,
parallel-veined conifers from the Jurassic of the Southern Hemisphere
that were assigned to Podozamites by Walkom (1921) or Agathis by
White (1981) also show their fair share of insect damage (McLoughlin
et al., 2015). It is notable that Harris seems to have changed his view
about Podozamites. Although Harris (1969) promoted it as a pure
morphogenus, Harris (1979) seemed to see it as a ‘genuine’ genus
with a particular stomatal orientation (transverse). His new genus
Lindleycladus could then be distinguished from Podozamites by its longi-
tudinal stomatal orientation. There are other conifer genera that would
fall into the broader scope of Podozamites, but which have been separat-
ed by morphological or cuticular differences, eg. Ferganiella and
Liaoningocladus (Sun et al., 2000).
Fig. 1. Scanning electronmicroscopy images of Podozamites cuticle from the Chagdamyn Forma
two stomatal zones separated by venal regions (scale = 40 μm). Stomata are transversally or
stomatal complex (scale = 10 μm). D, inner view of two stomatal complexes (scale = 10 μm)
What reproductive structures were associated with Podozamites in
the Early Cretaceous is less clear. Both Cycadocarpidium and
Swedenborgia were either extinct or highly restricted by this time.
Bugdaeva's (1995) report of Podozamites and Swedenborgia from the
Early Cretaceous of Siberia is themost recent for the reproductive struc-
ture. In the Early Cretaceous of Japan, the evidence of an attached ‘fruit’
shows that at least some Podozamites-type foliage was more-likely the
Podocarpaceae genus Nageia (Kimura et al., 1988), and in the Early
Cretaceous of Colombia Podozamitesmight have carried the Pityostrobus
structure (van Waveren et al., 2002).

The fossil Xenoxylon was long ago suggested to be the wood of
Podozamites (Nathorst, 1897), but more recent work (Philippe and
Thevenard, 1996; Philippe et al., 2013; Oh et al., 2015) suggest several
other, perhaps more likely candidates. The suggestion has also been
made that Podozamites might have been herbaceous and “might have
played an important and often underestimated role in the Mesozoic
ecosystems possibly as a substantial part of dinosaur diet” (Gierliñski
et al., 2006). The pollen of Podozamites is unknown, though several
bisaccate types that generally coexisted, such as Pinuspollenites and
Podocarpidites, are reasonable candidates in the Northern Hemisphere.
Bomfleur et al. (2011) isolated Alisporites pollen from Switzianthus, the
probable pollen organ of Heidiphyllum/Telemachus in the Late Triassic
of Antarctica. Bolkhovitina (1956) referred Araucariacites australis pol-
len grains to Podozamites (see also Tralau, 1968).

Southern Hemisphere (Gondwanan) Triassic occurrences of the
Podozamitesmorphology have been found associated with reproductive
structures related to Cycadocarpidium and Swedenborgia, e.g. Telemachus
(Anderson, 1978; Axsmith et al., 1998; Escapa et al., 2010) and have
proven similarly difficult to prepare cuticle. However, Early Cretaceous
specimens have robust cuticle with a morphology that can place them
in the Araucariaceae (Cantrill, 1991) and the Late Jurassic Talbragar
forms are also associated with (but not connected to) araucarian cones
and cone scales (Walkom, 1921; White, 1981).

Despite the variety of names and the uncertainty over the repro-
ductive structures, there is a continuity of this morphology in the
eastern Asian fossil record that is highly suggestive of a single,
related group. In this paper we deal with Podozamites in that sense,
assuming that it and related forms were a distinct taxon of the
Asian Mesozoic.
tion (Barremian) of the Bureya Basin, Russian Far East. A, inner view of lower leaf showing
iented. B, inner view of single stomatal complex (scale = 10 μm). C, inner view of single
.
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Fig. 2. Late Triassic distribution of Podozamites and similar taxa (large dots), along with
plant fossil localities where Podozamites has not been recorded (small dots), and
vertebrates chiefly dinosaurs (asterisks). Superimposed on a c. 210 Ma palaeogeographic
configuration, supplied by C. Scotese. There are four isolated Podozamites occurrences
above a palaeolatitude of 80° N. that are awkward to show on this projection. These are
(and their PBDB collection number): Amga River (30,422), Cape Tsvetkova (30,416),
Sincha River (30,524), and Unguokhtakh River (30,547).
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Around 20 species of Podozamites have been recognised in eastern
Asia, as well as morphologically similar taxa like Ferganiella,
Lindleycladus and Nageiopsis. It is likely that some of the ‘species’ are
merely morphological extremes or outliers and some workers prefer
to classify them as varieties or ‘forms’. Podozamites leaves ranged in
size from about 15 mm long by 8 mm wide, to 160 by 40 mm. They
could have up to 25 veins per 10 mm of leaf width, in some cases with
as many as 34 veins across the full leaf width (Sun, 1993). Thicker
veins commonly alternated with thinner ‘interstitial’ veins. Podozamites
leaves were helically arranged on a shoot that could be distichously
flattened, or not (Harris, 1935).

The purpose of this paper is to provide a broad review of the
distribution of Podozamites (and similar forms) through the Mesozoic
in eastern Asia (where there is a good plant fossil record through time
and at a range of latitudes), and placing this in the context of the mor-
phology of associated conifers, and the appearance of angiosperms. It
is not a taxonomical review, but it hopes to stimulate some interest in
this enigmatic conifer (or rather, group of conifers) and how itmay con-
tribute to some broader issues.

2. Methods

For this study ‘eastern Asia’ includes China, Japan, Korea, Mongolia,
and eastern Siberia.

Distribution data for eastern Asian Podozamites (and similar genera)
were gleaned from two different sources. One was specialist
palaeobotanical literature (journals or books). The second was the
PaleoBiodiversity Database (PBDB; paleobiodb.org). Virtually all the
PDBD Mesozoic records for China at present are from the series of
‘Stratigraphic Tables’. These publications collate stratigraphic data on a
provincial basis and include lists of plant fossils. These may be summa-
ries for formations, or for specific levels of a measured section. Most
specialist literature illustrates examples of Podozamites shoots (as
compared with single leaves), and although the ‘Stratigraphic Tables’
are not illustrated, we assume that most records are correct.

We deliberately refer to other conifers in terms of leaf or shoot
morphology, i.e., ‘needle-leaves’ (e.g. Pityophyllum), pinnate-leaves
(e.g. Elatocladus, Sequoia), scale-leaves (e.g. Brachyphyllum, Thuja), and
awl-leaves (e.g. Pagiophyllum) to emphasise generalities. We occasion-
ally use Linnaeannames of extant coniferswhen the aim is to emphasise
taxonomic diversity.

To help understandnot just where Podozamites grew, but alsowhere
it did not, plant fossil assemblages that lacked Podozamites were also
noted. The distributions of terrestrial vertebrates (essentially
‘dinosaurs’) were also plotted. These tend to occur in facies where
plant remains are absent—commonly ‘red beds’, which were probably
deposited in more seasonal conditions than the coal-bearing facies
with plant fossils. The distribution of evaporites, another suggestor of
dry conditions, was also noted. These use the dataset of Boucot et al.
(2013). Data were plotted on five palaeogeographic maps based on
the reconstructions of Scotese (2014a,b). These are Late Triassic,
Early Jurassic, Middle Jurassic, Late Jurassic, and Early Cretaceous.
Present-day distribution coordinates were rotated using the software
PointTracker (obtained from C.R. Scotese).

3. Results

3.1. Triassic

The oldest eastern Asian (and global) occurrence of Podozamites on
the PBDB database is a single Early Triassic record, and there are then
just five records for the Middle Triassic. However, Podozamites is not
mentioned in palaeobotanical works over this time (e.g. Sun et al.,
1995a), so the occurrences in the Atlas lists that the PDBD refers to
might be interpreted as restricted occurrences. We note Ye (1979) re-
corded a Middle Triassic “Desmiophyllum sp. (Glossophyllum? sp.)”,
and that might conceivably be a Podozamites. Other conifer morphol-
ogies were present in China, for example both scale and awl-leaves in
the Early Triassic of Hainan Island (Zhou and Li, 1979).

Podozamites spread rapidly in the Late Triassic (the PBDBhas over 70
records), with a concentration in South China, but extending north, into
Siberia (Fig. 2). At this time, Podozamites had become a dominant plant
in many lowland areas. There are few plant fossil assemblages from this
time that do not include Podozamites. The most southern Late Triassic
record for the region is Bintan Island, Indonesia (Wade-Murphy and
van Konijnenburg-van Cittert, 2008; c. palaeolatitude 15° N). This con-
tains scale-leaved conifers and an isolated leaf identified as Podozamites.
However, this is currently an outlier, and most records are north of
about 30° palaeolatitude. In China, one of the most southerly Late Trias-
sic plant fossil records comes from Guangdong Province (Wang, 1993;
palaeolatitude c. 33° N). This has prominent Podozamites, but also
some pinnate and needle-leaved confers. There was a similar situation
further to the north, in Fujian Province (Zhou, 1978). In an early study
of the Mesozoic flora across several Chinese provinces Sze (1933)
found Podozamites to be by far themostwidespread taxon. In amore re-
stricted study on West Hubei, Sze (1949) also found Podozamites to be
the most widespread taxon, closely followed by the sphenophytes. In
the Late Triassic of the Sichuan Basin, Huang and Lu (1992) interpreted
the ginkgophyte Baiera and Podozamites as forming the ‘climax’ of veg-
etation succession.

In the southwest Sichuan Basin flora of Baoding (Hsu et al., 1979;
palaeolatitude c. 35° N), Podozamites was one of only two conifers
(the other was the pinnate Stachyotaxus) and both appear to have
been uncommon. However, further to the north of the basin (c. 41° S
palaeolatitude), Podozamites was a major component in the Late
Triassic. Li (1964, p. 165) noted that “the species of Podozamitales
form a most conspicuous feature of this flora”. Ye et al. (1986) docu-
mented fossils from three stratigraphic levels across five localities, and
found Podozamites to be one of themostwidespread foliage taxa. Its fre-
quency was just below that of the ferns Cladophlebis/Todites and the
bennettitalean Pterophyllum, and similar to the sphenophytes and Ctenis
and Zamites (cycad and bennettitale respectively). Podozamites and
Ferganiella were almost the only conifers in these assemblages (Wang

http://paleobiodb.org
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Fig. 3. Early Jurassic distribution of Podozamites and similar taxa (large dots), along with
plant fossil localities where Podozamites has not been recorded (small dots), and
vertebrates chiefly dinosaurs (asterisks). Superimposed on a c. 190 Ma palaeogeographic
configuration supplied by C. Scotese.
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Fig. 4. Middle Jurassic distribution of Podozamites and similar taxa (large dots), along with
plant fossil localitieswhere Podozamiteshas not been recorded (small dots), and vertebrates
chiefly dinosaurs (asterisks). Superimposed on a c. 170Ma palaeogeographic configuration
supplied by C. Scotese.
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et al., 2010). Podozamites was mostly the only conifer in Qinghai
Province (He, 1980), although needle-leaved Pityophyllum is also re-
ported. At a similar latitude to the west, Podozamites was a member of
the Yenchang-type Flora of the Tarim Basin (palaeolatitude c. 40° N;
Wu et al., 2000).

In the northeast of China, Podozamiteswas themost prominent coni-
fer, but there were typically some other conifers as well—with pinnate
and needle-leaved foliage, although not with scale-leaves (Sun, 1983;
Sun, 1993). A similar situation prevailed in the Primorye region near
the Chinese-Siberian border (palaeolatitude c. 48° N) where various
Podozamites remained present throughout the Late Triassic, in associa-
tion with pinnate conifer foliage but no scale-leaved examples
(Volynets et al., 2008). P'an (1936) found abundant Podozamites in the
Yenchang Formation of northern Shensi. This is in surprising contrast
to the work of Sze (1956), in the same formation two decades later,
who found no conifers at all.

In Japan and Korea, Podozamiteswas also common (Kim andKimura,
1986; Chun, 1996; Kim, 2001), with Kimura andKim (1989)making the
interesting comment that particularly long and narrow Podozamites
leaves are restricted to Late Triassic floras. This suggests that the
physiognomy of the genus may have potential for interpreting
palaeoclimate.

Most Late Triassic Podozamites records are south of a palaeolatitude of
about 70° N, althoughmany of themore northerly ones are only as lists in
regional geological accounts. There are four records on the PDBD much
further to the north (e.g. Gromov et al., 1980) but these need careful
scrutiny.

3.2. Early Jurassic

Globally, there was an important vegetation turnover in response to
the Triassic–Jurassic boundary event. In eastern Asia, several genera dis-
appeared, and some new ones appeared. However, in the areas where it
predominated in the Late Triassic, Podozamites appears to have remained
untouched. Its latitudinal range was from at least 30°–70°. The common
species remained and it still formed near monospecific assemblages. In
Guangdong Province of southern China, it was absent in an assemblage
documented by Wang et al. (2014), but further north, in Hunan, it
remained the dominant conifer of the Early Jurassic (Zhou, 1984). In
the Sichuan Basin, Podozamiteswas a common component of the earliest
Jurassic Zhenzhuchong Formation (Ye et al., 1986; Huang, 2001) and at
times it appears to have formed a monogeneric vegetation. Although
several other conifers are known (scale, awl, pinnate and needle-
leaved), these appear to have been rare (Ye et al., 1986).

On a broader time-scale, there are suggestions of a centripetalmove-
ment of Podozamites distribution, away from south-western China, and
perhaps with some expanding to the north (Fig. 3). This movement
probably reflects drying in the south-west. Coal there is replaced by
more ‘mottled’ sediment with vertebrate remains, but coal becomes
more extensive and thicker to the north and east.

In southern China, Podozamites has not been found in the Jinji
Formation, where awl and pinnate conifers are the main types (Wang
et al., 2014). In North Shensi, Podozamites continued through the
Yenan–Isihihtsen (originally part of the Wayaopu Coal Series) Series
and Chilio Series (Liu, 1956).

3.3. Middle Jurassic

By theMiddle Jurassic, coal is abundant in northern China, particular-
ly from early in the Middle Jurassic (Aalenian to Bajocian). However,
southern China is dominated by the occurrence of extensive ‘red beds’
(Chan, 1938; Bien, 1941; Sheng et al., 1962; Nguyen and Sha, 2007)
along with the absence of coal suggesting that rainfall had become
distinctly seasonal across the southern part of the region. Plant fossils
are essentially absent from there. Elsewhere, Podozamites remains a
component of the known assemblages, although it is usually no longer
dominant (Fig. 4). It occurs along with other conifers in the Turpan–
Hamii Basin in the NW of China (Shang et al., 1999), the Junggar Basin
(Sun et al., 2010; palaeolatitude c. 60°, see Sha et al., 2011, 2015), in
the Beijing area (Zhang and Jiang, 2010), Sichuan (Yang, 1987), Qinghai
Province (He andWu, 1986), and the Daohugou fossil-bearing strata of
InnerMongolia and Liaoning Province (Na et al., 2015). In theMiddle Ju-
rassic coal measures of the Yima Formation, Henan, Podozamiteswas the
most abundant of only three conifers, the others being Parastorgaardia
and Sewardiodendron (Zeng et al., 1995; Yao et al., 1998). The Middle
Jurassic Utano flora in Japan is a ‘southern’ type containing scale-leaved
conifers, but no Podozamites (Kimura et al., 1986). The northern limit of
Podozamites (with the exception of a scattered few records), appears to
have contracted from the Early Jurassic, to a more clearly defined
palaeolatitude of about 60°. North of this, various plant fossil
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assemblages are known, but without Podozamites. Thus by this time,
Podozamites does not appear to have included a polar distribution.
3.4. Late Jurassic

By the Late Jurassic, the western (more interior) Chinese region was
clearly relatively dry, without coal, but with extensive red-beds. With a
few exceptions, the plant fossil record from these regions all but van-
ishes. Plant fossils are found across Mongolia, but without Podozamites.
The distribution of Podozamites fossils now had a distinctly north–south
axis, along the eastern edge of China, and extending far up into Siberia
(Fig. 5). Southern Chinese assemblages have scale-leaved conifers as
the most important, or only conifers. They suggest a clear southern
limit of Podozamites at around 20°, whereas the northern limit,
remained at, or a little less than, 60°.

In general, by this time, conifers had become a dominant element of
the flora (Zhou, 1995). The Hanshan Formation of Anhui Province in-
cludes possible Podozamites, alongside scaled-leaved conifers (Cao,
1985; Zhou, 1995). In the Shahezi Formation of north-eastern China,
Podozamites existed alongside several other conifer morphologies. Ex-
tensive coal-swamps had retreated further to the north-east of China
and neighbouring Siberia. In the Zeya River area, Podozamites coexisted
with the needle-leaved conifers, which were themore widespread taxa
(Vakhrameev, 1965; Lebedev, 1965). These were the only conifers ex-
cept for rarer ones with awl-leaves. Podozamites was also present in
the Bureya Basin (Vakhrameev and Doludenko, 1961; Krassilov, 1961;
Markevich and Bugdaeva, 2014) as well as in the polar Lena Basin
(Vakhrameev, 1961). The bulk of Siberia fell into Vakhrameev's
(1987) Siberian floristic area, where for example, the pollen of
Classopollis, was minor.

In Japan, fossil assemblages from this time can be recognised as fall-
ing into two distinct provinces—an ‘outer’ zone Ryoseki flora, and an
‘inner’ zone Tetori flora. The Tetori flora contains “varied and abundant”
Podozamites, whereas the Ryoseki has none, having instead “varied and
abundant” small scale-leaved conifers (Ohana and Kimura, 1995; Yabe
et al., 2003; Matsukawa et al., 2006). These two floras could also be
recognised on mainland eastern Asia, where the Tetori was more of a
northern flora (Kimura, 1987). The sharp Japanese distinction appears
to be the result of large-scale tectonics, moving the outer Ryoseki
Late Jurassic
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Fig. 5. Late Jurassic distribution of Podozamites and similar taxa (large dots), along with
plant fossil localities where Podozamites has not been recorded (small dots), and
vertebrates chiefly dinosaurs (asterisks). Superimposed on a c. 150 Ma palaeogeographic
configuration supplied by C. Scotese.
rocks north, to juxtapose them with the Tetori (e.g. Isozaki, 1997;
Tsukada, 2003).
3.5. Early Cretaceous

The southern limit of Podozamitesmoved north to about 30° N, while
for much of the Early Cretaceous, the northern limit appears to have
remained at or a little less than 60° (but see below). Evaporites and ver-
tebrate remains became extensive, although there was a broad range of
overlap geographically with Podozamites (not necessarily at exactly the
same time).

Low-latitude fossil plant localities are few (Fig. 6), but include
Malaysia (Kon'no, 1967; Yaacub and Said, 2002). These have a typical
low-latitude assemblagewhere the conifers have scale-leaves, although
Kon'no (1967) illustrated threemulti-veined leaves thatwere identified
as ‘Nageiopsis? ’—a Podozamites type of leaf.

Dry conditions continued over much of China in the Early
Cretaceous, but in detail the geographical and temporal situation can
be complex. In Eastern China, the Early Cretaceous floras of Fujian and
Shandong Provinces include Podozamites, and some pinnate conifer
taxa, but it is the scale and awl-leaved conifers that predominate (Liu,
1990; Cao et al., 1995; Wu, 2000; Deng et al., 2012). There is a similar
situation on the east coast of China. For example, near Shanghai, conifers
are abundant in the Early Cretaceous flora of Zhejiang (Cao, 1999), with
scale or awl-leaves dominating the conifer component, and where
Podozamites is only “very rare”. Further north, in the outskirts of Beijing,
P'an (1933) found Podozamites, along with pinnate and needle-leaved
conifers. In mid-latitudes, angiosperms may have appeared as early as
the Barremian (Li, 2003).

In the north-east of China, Deng et al. (2012) recognised three Early
Cretaceous floras—the Jehol, Fuxin and Dalazi (these all lay at about 45°
N at the time). Depending on the author, the Fuxin Formation is either
not included in the Jehol Group (Zhou et al., 2003) or is the uppermost
unit of the Jehol Group, with the Jehol Biota limited to the middle and
lower units of the Jehol Group: the Jiufotang and Yixian formations
(Sha, 2007; Pan et al., 2013). The Jehol flora studied by Deng et al.
(2012) comes from the Jiufotang and Yixian formations, and the Fuxin
flora from Fuxian Formation. The potential relevance to Podozamites is
that the Fuxin Formation has prominent coal, in the Jiufotang Formation
10˚
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Fig. 6. Early Cretaceous distribution of Podozamites and similar taxa (large dots), along
with plant fossil localities where Podozamites has not been recorded (small dots),
vertebrates chiefly dinosaurs (asterisks) and evaporites (triangles). Superimposed on a
c. 130 Ma palaeogeographic configuration supplied by C. Scotese.
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coal is limited to the upper part (Sha, 2007), whereas coal is absent in
the Yixian Formation. In the Yixian Formation, Wu (1999a) did not re-
cord Podozamites, although a relatively broad-leaved, single-veined co-
nifer Cephalotaxopsis sp., was present along with scale- and pinnate-
leaved conifers (Zhou et al., 2003). Podozamites was recorded from the
Yixian Formation by Zheng et al. (2003), but as a component of a flora
otherwise dominated by what they termed “xeric” conifers, with scale,
awl, needle and pinnate foliage. A very similar mix of conifers was re-
ported from NW China (Deng and Lu, 2008). In the Fuxin flora,
Podozamites is diverse, and occurs with other conifers, but only rarely
are these scale-leaved (Chen et al., 1988). The Dalazi flora is dominated
by angiosperms and does not include coal (Du et al., 2008).

In Heilongjiang Province, bordering the Primorye region in the far
north-east of China, Podozamites was present, along with pinnate and
awl-leaved conifers (Oishi, 1935; Zhang and Xiong, 1983). Later floras
in the same area have Podozamites together with pinnate and scale-
leaved conifers, although not in the same layers (Zheng and Zhang,
1983).

In Inner Mongolia of northeast China the Early Cretaceous flora of
Hailar is coal-bearing, and includes Podozamites together with needle
and pinnate conifers (but no scale-leaved ones, Deng et al., 1997). The
Early Cretaceous Zhonggou Formation of the Jiuquan Basin in NW China
likewise has a rich coniferous flora. Podozamites was present, but as one
genus of a diverse conifer assemblage that also included scale, pinnate
and awl-leaved forms (Deng and Lu, 2008). Several of these taxa probably
belong to Cheirolepidiaceae (Du et al., 2013). In Mongolia, Krassilov
(1982) reported Podozamites and scale-leaved conifers, as themostwide-
spread conifers. They occurred together and at times theywere associated
with Araucaria (with awl-like tomore flattened leaf forms). Reproductive
structures, such as Pseudolarix, suggested that Podozamites had also been
associated with needle-leaved conifers.

In the Primorye region of southern Russian Far East, Krassilov (1967,
1973) reported Podozamites as “locally abundant” in the Valanginian, and
present along with other conifers, in the lower part of the Barremian–
Aptian Starosuchan Formation. Higher in the same formation,
Bugdaeva et al. (2014) found the coals to be dominated by the dispersed
cuticle of the pinnate Elatides asiatica. Podozamites appears to have been
at least rare in this facies. Much further north, in what were then polar
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regions, such as the Okhotsk–Chukotka Volcanic Belt, and typified by
the Grebenka flora, there were very diverse conifers (although not
scaled-leaved) alongwith angiosperms, but Podozamiteswas apparent-
ly absent (Lebedev, 1992; Spicer et al., 2002).

Angiosperms began to appear in Siberian assemblages at the start of
the Albian (Fig. 7). At this time they were small-leaved and apparently
only a minor part of the vegetation. But by the late Albian they included
large-leaved taxa andwere a dominant part off the vegetation. The tran-
sition to angiosperm-domination was not simple, as emphasised by
Vakhrameev (1991, p. 187) “certain localities continued to be inhabited
and even dominated by the Early Cretaceous elements that disappeared
later”. The late Albian Serta floral assemblage of western Siberia far to
the north of the Junggar Basin, NW China (c. 54° N at the time), was
discussed in detail by Golovneva and Shchepetov (2010). They conclud-
ed that it represents thefirst diversification of large-leaved angiosperms
in the region. It was dominated by leaves of Platanus, along with abun-
dant pinnate conifers, such as Sequoia sp., and common needle-leaved
ones, but they found just a single impression of Podozamites sp. How-
ever, Podozamites was present in one of the most northerly Albian
floras—Balyktakh River (palaeolatitude c. 80° N)—where it grew
with both pinnate and needle-leaved conifers (Herman and Spicer,
2010).

In the Early Cretaceous of Japan, the evidence of an attached ‘fruit’
shows that at least some Podozamites-type foliage was attributable to
the Podocarpaceae genus Nageia (Kimura et al., 1988).

3.6. Late Cretaceous

The Late Cretaceous features the absolute takeover of the angio-
sperms inmany areas. Low latitude fossil assemblages from the eastern
Asian area are uncommon, but include Hong Kong, and these have an-
giosperms along with scale and awl-shaped conifer leaves, but no
Podozamites (Wu, 1999b). Red-beds were still prevalent, and the rare
plant fossils associated with them include scale-leaved conifers (Liang,
2006; Li et al., 2015). Generally across the rest of China, the situation
was similar (Sun et al., 1995b). Although angiosperms were abundant,
conifers were also plentiful and diverse. They included a variety of pin-
nate and scale-leaved forms including extant taxa such as Taxodium,
st Siberia
lovneva and 

chepetov, 2010)

North Siberia
(Golovneva, 2005)

Mengkerian 

Floral Assemblage
Stage

Angios dominant or prominent
Key

Podozamites common/rare

Angiosperms

Novosiberian

Mutinian

erta

ubaevo/
odaik

d the mid-Cretaceous transition to an angiosperm-dominated flora. The figure is based on
hat the arrival of angiosperms and the continuity of Podozamites variedwithin a time-zone



103M. Pole et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 464 (2016) 97–109
Podocarpus, Sequoia, Metasequoia, Glyptostrobus, and scale-leaved
forms, such as Thuja. In general, the Late Cretaceous conifers of Siberia
are a mixture of scale, awl and needle-leaves living with broadleaved
angiosperms. An exception is the unusual conifer Protophyllocladus,
which was a broad, flattened phylloclade, morphologically highly simi-
lar to its extant namesake, Phyllocladus (Nosova and Golovneva, 2014).
Inwestern Siberia (Golovneva and Shchepetov, 2010), the Kubaevo Flo-
ral Assemblage (palaeolatitude c. 74°, Cenomanian) was dominated by
angiosperms along with diverse conifers including needle-leaved
(Pinus, Picea, and Cedrus), pinnate (Sequoia), and scale-leaved forms.
Broad-leaved flowering plants by this stage were dominant in terms
of both abundance of fossils and generic diversity. Also in western Sibe-
ria, Golovneva and Nosova (2012) reported a single Podozamites from
the otherwise angiosperm (platanoid) dominated Cenomanian
Simonovo Formation.

Late Cretaceous Podozamites have been reported from a few, high-
latitude floras (Fig. 8). These include the Arman flora (Herman, 2005,
2011; Herman et al., 2012; see also Filippova and Abramova, 1993, who
dated it as Cenomanian) and Zarya flora (Shczepetov and Golovneva,
2014), both Turonian–Coniacian and situated at a palaeolatitude of
c. 67–70°. It has also been reported from the Turonian–Coniacian Chauna
Group, Okhotsk–Chukotka subregion (palaeolatitude c. 80°; Shczepetov,
1991; Belyi, 1977; Kelley et al., 1999).

The most northerly Albian–Cenomanian flora is Grebenka
(palaeolatitude c. 78°). Filippova and Abramova (1993) listed
Podozamites, although Spicer et al. (2002) did not. A range of pinnate
and awl-leaved conifers were present, along with angiosperms. At
a slightly higher latitude, the Turonian Flora of Novaya Sibir'
(palaeolatitude c. 82°, Herman and Spicer, 2010), also lacks Podozamites,
although notably, Agathis and Desmiophyllum were recorded. These
grew with a diverse range of other conifers (needle, pinnate and scale
leaves) and angiosperms. The far north-east Siberian Maastrichtian
Flora of Amaam Lagoon (palaeolatitude c. 76°, Moiseeva, 2012) had
only pinnate conifers in a diverse, angiosperm-dominated flora.

The most recent location of Podozamites is probably the Santonian–
Campanian Topolevskaya Unit, from the Anadyr River, and, at a
palaeolatitude of c. 81°, was one of the most polar (Herman, 2011). It
should be kept inmind that some othermulti-veined conifers persisted,
but Podozamites was very restricted at the start of the late Cretaceous,
and likely extinct by the end.
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Fig. 8. Late Cretaceous distribution of Podozamites and similar taxa (large dots),
vertebrates chiefly dinosaurs (asterisks) and evaporites (triangles). Superimposed on a
c. 90 Ma palaeogeographic configuration supplied by C. Scotese. The datapoint of
Golovneva and Nosova (2012) lies just to the west of the map boundary at c. 70° N.
4. Discussion

Podozamites distribution data suggest an origin and then rapid spread
in the Middle Triassic. By the Late Triassic, Podozamites was widespread
over eastern Asia perhaps from 15° and certainly from 30° S, to around
70°N. At this northernmost limit, Podozamiteswas in a polar environment
(N66° N). The overwhelming abundance of Podozamites in some assem-
blages, or its consistent association with sphenophytes, suggests a nearly
mono-dominant vegetation, or onewhere it grew over a ground-cover of
sphenophytes (assuming it was a tree).

Its abundance in Early Jurassic assemblages in China contrasts with
Greenland, where Podozamites appears to have suffered from the
Triassic–Jurassic boundary event. Podozamites there was classified as
‘broadleaved’ by Belcher et al. (2010), and it was a member of the gener-
ally broad-leaved andpotentially lessfire-prone vegetation that existed in
the Late Triassic. These authors concluded that the Early Jurassic vegeta-
tion in Greenland was more narrow-leaved and more fire-prone. So-far,
such a physiognomic change is not yet evident in eastern Asia. Fire, how-
ever, was at least sporadically present in mid-Mesozoic eastern Asia
(Early Jurassic–Early Cretaceous, Yamazaki and Tsunada, 1982; Miao
et al., 1989; He, 1995; Tanner et al., 2012), as it was in Greenland
(Harris, 1926; Belcher et al., 2010). At the polar extreme of its range,
Podozamiteswas part of a deciduous and evergreen community. The veg-
etation dynamics in these then warm regions have been the center of
much attention (Beerling and Osborne, 2002; Osborne et al., 2004;
Royer et al., 2005), but it appears that disturbance, probably primarily
fire, seems to have been critical in maintaining the mix (Brentnall et al.,
2005). Mid-latitude deciduous forests are of course widespread today,
and the phenomenon is reasonably well understood (Monk, 1966;
Chabot and Hicks, 1982; Aerts, 1995; Givnish, 2002). However, the exis-
tence of large, dominantly deciduous vegetation types in mid-latitudes,
as suggested by Podozamites-dominance, does not seem to have been
remarked upon before. Note that at times, Podozamites grewalongside di-
verse gingkophytes (Deng et al., 2012) and it is generally accepted that
they were also deciduous, although perhaps this relies a little too much
on the habit of the one survivor, Ginkgo (Note that in contrast to
Podozamites, both extant Ginkgo and the extinct ginkgophytes tended to
have relatively robust cuticle). These mid-latitude deciduous forests
would have grown in conditions quite different from those that
promote deciduousness there today. This would have included an
absence of cold polar air, and with an absence of polar ice caps, cor-
respondingly more water in atmospheric circulation. Perhaps this
mid-latitude deciduousness needs some attention as a phenomenon
in its own right.

As the interior of China dried in themid-late Jurassic therewas an ap-
parent contraction of Podozamites distribution towards the coast and out
of the polar region. Plant fossil assemblages in general become much
rarer in these times, so a simple map of Podozamites distribution can be
misleading. Reflecting the broad change away from carbonaceous and
relatively acidic sediments, vertebrate remains (typically including dino-
saurs) become more prevalent. The few plant fossil assemblages known
from these drier regions tend not to have Podozamites, suggesting that it
did respond negatively to drier conditions.

The Jurassic–Cretaceous saw a distinct northwards contraction of var-
ious plant taxa in the eastern-Asia region, or at least of their distribution
‘centroids’. A regional multivariate analysis for the Jurassic by Rees et al.
(2000) quantified the distribution centroids of the scale-leaved conifer
Brachyphyllum and of Podozamites. This resulted in a ‘floral gradient’
score of 9 for Brachyphyllum, whereas Podozamites scored 72. The higher
the score, the more polar, and hence cooler, was the distributional ‘cen-
troid’ of the genus. Cheirolepidiaceae, commonly with scale leaves, has
longbeen associatedwith dry conditions, although itwasprobably not re-
stricted to these (Alvin, 1982; Pole, 2000; Pole and Philippe, 2010;
Tosolini et al., 2015). The scale-leaved conifers were almost restricted to
low latitudes in the Late Triassic, but later their limit expanded north
into ‘territory’ that had been dominated by Podozamites.
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The dry conditions of the Early Cretaceous were probably detrimen-
tal to Podozamites and likely explain its local absences. However, there
are growing arguments for cold conditions in eastern Asia as well
(Amiot et al., 2011; Oh et al., 2015; Yang et al., 2013). In the Cretaceous,
the tectonically-induced east–west division between the Tetori and
Ryoseki floras in Japan continued. A similar distinction was recognised
in the Primorye region of Siberia (Golozoubov et al., 1999) although
the distribution of Podozamites here seemed less rigid. On mainland
East Asia, the natural gradient was more clearly a north–south one.
Spicer et al. (1993) usedmultivariate statistics to show that the relative
distribution of genera ‘centroids’ in Asia was basically the same in both
the Early and Late Cretaceous as it had been in the Jurassic (despite the
appearance of angiosperms). Saiki and Wang (2003) selected
Podozamites as one of their ten ‘climate-indicator’ plants for the Early
Cretaceous of China. They found it to be a representative taxon of the
‘Northern type’ floristic province, where it tended to occur with the
Ginkgoales. It was not as restricted as the Ginkgoales were though,
and some Podozamites still occurred in the south. Saiki and Wang
(2003) found Podozamites contrasted in its distribution with the scale-
leaved ‘frenelopsid’ Cheirolepidiaceae conifers, which were typically in
the south. The scale-leaved conifer morphology, especially in the earlier
Mesozoic of eastern Asia is generally associated with equatorial
regions—areas that were relatively hot and dry in contrast with pre-
sumed cooler and wetter conditions favouring Podozamites. Although
some of them occur in the north, amongst Podozamites localities, in al-
most all cases they are still mutually exclusive. It is instructive that al-
though at the level of a ‘locality’, taxa such as Podozamites and scale-
leaved conifers may occur together, where the finer details of stratigra-
phy are given, they are commonly found to occur in different beds. Thus
it may be that in these areas of regional overlap, the two morphologies
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A detailed distribution of Podozamites in the mid-Cretaceous is un-
clear, partly due to the paucity of data in the south. But at face-value,
Podozamites shows signs of both retreating towards the north—and
expanding its distribution back into polar latitudes.

Sometime later in the mid-Cretaceous, the ‘classic’ Podozamites be-
camemore or less extinct in eastern Asia (although itmay have lingered
on in some localities). This extinction meant that an entire lifestyle that
once dominated—a deciduous conifer with broad, multi-veined
leaves—vanished forever. The remains of broad, multi-veined conifers
do appear scattered through the subsequent fossil record, and occur
today (e.g. Agathis and Nageia), but these are evergreen.

The end of Podozamites is broadly coincident in timewith the rise to
dominance of angiosperms, although angiosperms did not achieve
dominance simultaneously across eastern Asia, and in some cases
Podozamites co-existed with them for a period. Nevertheless, angio-
sperms were mostly dominant, and Podozamites was absent. However,
several relatively high-latitude Cretaceous floras were particularly rich
in conifer genera. It remains to be seen if this is, or partly is, an artefact
of taxonomy—with earlier specimens tending to be lumped into
morphogenera. Nevertheless, scale-leaved conifers appear to have
expanded their range northward and joined the high-latitude
conifer ensemble, an areawhere they seem to have been entirely absent
before.

The extinction of Podozamites can be placed into the broader, global
context whereby conifers in general (and other gymnosperms) appar-
ently lost ground as angiosperms advanced. This is the topic of much
discussion (e.g. Bond, 1989; Lusk et al., 2003; Pittermann et al., 2005;
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Sperry et al., 2006), and one line of research has focussed on the
Podocarpaceae. This conifer family is usual in that members commonly
co-exist in angiosperm-dominated forests, and can grow exceptionally
large leaves. Brodribb et al. (2012) have suggested that part of the rea-
son for their continuing success is their large leaves. This gives them a
competitive ability in the shaded forestfloor. This explanation is reason-
able, however, in the case of Podozamites versus angiosperms, it is re-
markable not just that it was this broad-leaved conifer that vanished,
but that it was the much smaller leaved conifer taxa (the needle-
leaved, pinnate and scale-leaves) that remained and co-existedwith an-
giosperms for the next 100 Myrs or so.

It is worth considering comparing the range in leaf size of
Podozamites with extant Podocarpus—the conifer genus with some of
the largest leaves today. In general, the largest Podozamites leaves are
similar to the largest Podocarpus (Fig. 9). Themaximum inter-venal dis-
tances achieved by Podozamites were in the order of a millimetre, and
were commonly much less. The margin of a medium-sized Podocarpus
leaf is about 5 mm from the vein, and is about 10 mm in the largest
(e.g. Podocarpus spathoides). Large extant Podocarpus leaves may well
have reached the physiological limit of width for single-veined leaves,
but it is curious that Podozamites, having many veins, did not in some
way expand to take advantage of this.

The coincidence of Podozamites demise and the rise of angiosperms
may turn out to have been just that—a coincidence. For instance, the
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combination of multiple veins and deciduousness might have made
them vulnerable to certain climate changes, such as declining rainfall.
The highly restricted range of extant Ginkgo, probably the nearest living
analogue to Podozamites, may be instructive in that respect (per. comm.
D.K. Ferguson). As a thin-leaved conifer with apparently no physical de-
fensive features, Podozamites and other broadleaved conifers suffered
from “elevated levels” of insect consumption. As Ding et al. (2015) dem-
onstrated, the feeding strategy of insects on these conifers changed
markedly over the Mesozoic. It cannot be ruled out that this may have
eventually contributed to their demise, but Podozamites had countered
this evolving force for millions of years—and when it did become
extinct, it was surrounded by presumably palatable deciduous
angiosperms.

Finally, Podozamites was just one of several taxa that show an ap-
parent poleward movement (part migration and part contraction)
over the Mesozoic in the Northern Hemisphere (e.g. Caytoniales,
Equisetites, Hausmannia, Nilssonia, Phoenicopsis, Sagenopteris; see
the PBDB). A similar trend is apparent in the Southern Hemisphere,
where in some cases, it extended into the Cenozoic (e.g.
Bennettitales, Corystospermales, Ginkgoales and Cheirolepidiaceae;
Carpenter and Hill, 1999, McLoughlin et al., 2008, 2011; Barreda
et al., 2012). Seen in this context the Cretaceous expansion of angio-
sperms towards the poles (Axelrod, 1959; Crane and Lidgard, 1989;
Drinnan and Crane, 1989) might be seen as less an invasion of higher
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latitude vegetation, than as being one component of a broader
movement.

5. Conclusions

After being uncommon earlier in the Triassic, Podozamites became
widespread across eastern Asia at mid-latitudes in the Late Triassic. At
this time it was frequently the only conifer in fossil assemblages and
in some assemblages it was overwhelmingly dominant. In terms of
the broader ranges of conifers, Podozamites tended to be bordered on
its equatorial side by scale-leaved conifers, and by pinnate, awl, or
needle-leaved conifers on the polar side.

Podozamites did not seem to be much affected by the Triassic–
Jurassic boundary event, remaining dominant in some assemblages
just after. However, as the Jurassic progressed, at least its fossil record
contracted out of central China in response to drying. By the Early
Cretaceous there had been a general shift in the ‘centroid’ of
Podozamites distribution to the north of China and Siberia. It was in
the mid-Cretaceous that angiosperms made their appearance and rap-
idly (although not synchronously) became dominant, and at roughly
the same time Podozamites became extinct. The spread of angiosperms
may well have an implication for Podozamites extinction. However, if
it does, it raises some interesting questions concerning how conifer
morphologies compete with angiosperms. We summarise this history
of eastern Asian Podozamites distribution along with the scale-leaved
conifer shoot morphology and angiosperms in a schematic diagram
(Fig. 10). The history of Podozamites distribution highlights two main
questions and suggests a foci for some future research:

1. The existence of an extensive deciduous forest atmid-latitudes in the
Late Triassic–Early Jurassic does not seem to have been remarked on
before. Although disturbance, probably primarily involving fire
seems to be the explanation for both deciduous and evergreens
coexisting in the polar regions, this explanation for lower latitudes
is an open question. We recommend one focus to be on clarifying
the fire-history of the eastern Asian region. This may be a key to un-
derstanding the existence of deciduous forests at mid-latitudes.

2. The end of Podozamites appears somehow linked with the rise of an-
giosperms. Whether or not they caused it, it is remarkable that this
broad-leaved conifer vanished at about that time, and was replaced
with much smaller leaved taxa. This suggests that we need to know
more about the competitive abilities of scale-leaved conifers, and to
model how broad-leaved, multi-veined and deciduous conifers may
have interacted. Considering Ginkgo as a Podozamites analogy may
be very useful here. A further keymay be the details of those Siberian
assemblages where Podozamites ‘hung on’ for different times with a
variety of other conifers in angiosperm-dominated vegetation. Fun-
damental to this, is establishing whether Podozamites was a tree or
a herb. Despite being such an important plant, we still do not know
what wood fossil is associated with it.
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