

Камчатский филиал ФГБУН Тихоокеанский институт географии ДВО РАН

Ассоциация ООПТ Камчатского края

Камчатская краевая научная библиотека имени С. П. Крашенинникова

СОХРАНЕНИЕ БИОРАЗНООБРАЗИЯ КАМЧАТКИ И ПРИЛЕГАЮЩИХ МОРЕЙ

Тезисы докладов XVI международной научной конференции 18–19 ноября 2015 г.

Conservation of biodiversity of Kamchatka and coastal waters

Abstracts of XVI international scientific conference Petropavlovsk-Kamchatsky, November 18–19 2015

Петропавловск-Камчатский Издательство «Камчатпресс» 2015

Сохранение биоразнообразия Камчатки и прилегающих морей: Te-C54 зисы докладов XVI международной научной конференции, посвященной 20-летию образования природных парков на Камчатке. – Петропавловск-Камчатский: Камчатпресс, 2015. – 408 с.

ISBN 978-5-9610-0262-1

Сборник включает тезисы докладов состоявшейся 18—19 ноября 2015 г. в Петропавловске-Камчатском XVI международной научной конференции по проблемам сохранения биоразнообразия Камчатки и прилегающих к ней морских акваторий. Рассматривается история изучения и современное биоразнообразие отдельных групп флоры и фауны полуострова и прикамчатских вод. Обсуждаются теоретические и методологические аспекты сохранения биоразнообразия в условиях возрастающего антропогенного воздействия.

ББК 28.688

Conservation of biodiversity of Kamchatka and coastal waters: Abstracts of the XVI international scientific conference, dedicated to the 20th anniversary of foundation of nature parks on Kamchatka. – Petropavlovsk-Kamchatsky: Kamchatpress, 2015. – 408 p.

The proceedings include the materials of the XVI scientific Conference on the problems of biodiversity conservation in Kamchatka and adjacent seas held on 18–19 November, 2015 in Petropavlovsk-Kamchatsky. The history of study and the present – day biodiversity of specific groups of Kamchatka flora and fauna are analyzed. Theoretical and methodological aspects of biodiversity conservation under increasing anthropogenic impact are discussed.

Редакционная коллегия:

В. Ф. Бугаев, д.б.н., Е. Г. Лобков, д.б.н., В. В. Максименков, д.б.н., А. М. Токранов, д.б.н. (отв. редактор), О. А. Чернягина

Издано по решению Ученого Совета КФ ТИГ ДВО РАН

Сборник издан при финансовой поддержке «Ассоциации ООПТ Камчатского края»

© Камчатский филиал ФГБУН Тихоокеанский институт географии ДВО РАН, 2015

ВЛИЯНИЕ АГРОГЕННОГО ВОЗДЕЙСТВИЯ НА СОДЕРЖАНИЕ ФОСФОРА В ПОЧВАХ КАМЧАТКИ

Е. А. Жарикова

ФГБУН Биолого-почвенный институт (БПИ) ДВО РАН, Владивосток

THE INFLUENCE OF AGROGENIC EFFECTS ON PHOSPHORUS CONTENT IN THE SOILS OF KAMCHATKA

E. A. Zharikova

Institute of Biology and Soil Science (IBSS) FEB RAS, Vladivostok

Фосфор, наряду с другими макроэлементами, необходим для существования живого веществ, более того, часто этот элемент определяет биомассу и продуктивность биологических сообществ. Особое значение он приобретает не в силу своего содержания, а в результате того, что без него невозможен синтез белков, кроме того, фосфор обеспечивает энергией клетки, активно влияет на рост растений, накапливаясь в семенах и точках роста. Соединения фосфора входят в состав различных тканей живых организмов - мозга, костей, панцирей. Во всех природных биогеохимических системах именно он ограничивает массу живого вещества (Добровольский, 2003). В верхней части континентальной коры содержание Р₂О₅ составляет 0.22 %, в вулканитах -0.16 % (Григорьев, 2009). В земной коре большая часть соединений фосфора представлена разновидностями апатита, преимущественно фторапатитом, всего в настоящее время известно более 200 фосфорсодержащих минералов. К природным источникам фосфора относятся изверженные магматические породы (габбро, андезиты, сиениты), а также осадочные породы типа апатитов, фосфоритов. Кроме того, фосфор поступает в биосферу с космической пылью и метеоритами (Гринвуд, Эрншо, 2008). Кларк фосфора в почве равен 0.137 мг/кг.

Геохимический цикл фосфора вызывает большой интерес, поскольку фосфор содержится во всех живых организмах. В неорганическом цикле фосфаты медленно выщелачиваются из вулканических или осадочных пород, благодаря процессам выветривания, а затем переносятся реками в озера и моря, где они осаждаются в виде нерастворимых фосфатов металлов или включаются в водную цепь питания. В тех регионах, где более глубокие и богатые фосфатами воды поднимаются на поверхность (в частности, у побережья Тихого океана), наблюдаются наибольшие популяции рыбы (Гринвуд, Эрншо, 2008).

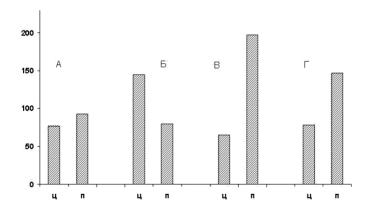
Значительный вклад в формирования миграционных потоков фосфора вносят минеральные удобрения. Систематическое применение фосфорных

удобрений в возраставших год от года количествах в период 1950–1990 гг. привело к зафосфачиванию больших площадей кислых почв гумидной зоны, в том числе и на Дальнем Востоке. Несмотря на то, что с 90-х гг. прошлого века применение удобрений резко сократилось, довольно большие площади пахотных земель продолжают оставаться зафосфаченными (Кудеярова, 2013).

Объектами исследования явились наиболее широко используемые в сельском хозяйстве почвы и их естественные аналоги. В Центральной Камчатской депрессии (долине реки Камчатки) это светло-охристые и слоисто-охристо-оподзоленные почвы, на Восточном побережье Камчатки (долина реки Авачи) – аллювиальные серогумусовые, слоисто-охристые и слоисто-светло-охристые почвы, сформированные на разных отложениях. На территории Западной Камчатской низменности (долина реки Быстрой) – аллювиальные серогумусовые и охристые оподзоленные почвы. Содержание валового фосфора было проведено рентгенофлуоресцентным методом, подвижного – в 0.2 н соляной кислоте. Коэффициент аккумуляции КА вычислялся как отношение валового содержания фтора в верхнем горизонте к содержанию в почвообразующей породе, коэффициент концентрации КК – как отношение среднего содержания в верхнем слое почв к кларку в почвах мира. Исследованные почвы являются супесчаными и легкосуглинистыми в поверхностных слоях, прослеживается облегчение гранулометрического состава вниз по профилю. Накопление тонких фракций в поверхностных слоях является свидетельством активного проявления процессов биогенного и химического разрушения первичных минералов в корнеобитаемой зоне.

По литературным сведениям, содержание общего фосфора в верхних горизонтах в природных почвах Камчатки варьирует довольно широко (табл. 1) и превосходит кларк в 2–2.5 раза, при этом часто наблюдается аккумуляция общего фосфора в верхних слоях почв.

Параметры	Зонн и др., 1963	Соколов, 1973	Карпачевский и др., 2009
Содержание P ₂ O ₅ , %	0.2 0 -0.61	0.27 0.11-0.54	0.30 0.21-0.65
КА	0.16	1.31	1.37
КК	2.50	1.95	2.18


Таблица 1. Содержание валового фосфора в почвах

Примечание. Над чертой – среднее значения, под чертой – диапазон значений. Здесь и в табл. 2: KA – коэффициент аккумуляции, KK – коэффициент концентрации.

Анализ полученных данных из парных разрезов показал, что в агрогенных почвах Западно-Камчатской и Восточно-Камчатской низменностей уровень содержания валового фосфора намного превышает естественный фон, а в почвах Центральной Камчатской депрессии равен ему (табл. 2). На всей территории полуострова КА > 1.00, т. е. происходит активное закрепление фосфора в поверхностных горизонтах почв, хотя его содержание по всему профилю крайне неравномерно. Наибольшие значения коэффициента аккумуляции получены для агрогенных почв Западно-Камчатской (6.70) и Восточно-Камчатской (2.70) низменностей. Высокие значения коэффициентов концентрации КК свидетельствуют о сильном зафосфачивании пахотных почв Камчатки, что может способствовать антропогенному эфтрофированию объектов гидросферы и ухудшению качества природных вод.

Содержание P ₂ O ₅ , %	Западно-Кам- чатская низмен- ность		Центральная Камчатская депрессия		Восточно-Кам- чатская низмен- ность		Среднее по полуострову	
	целина	пашня	целина	пашня	целина	пашня	целина	пашня
Среднее	0.73	1.27	0.56	0.56	0.54	0.62	0.60	0.80
Минимум	0.60	0.99	0.25	0.19	0.35	0.36	0.25	0.19
Максимум	1.23	1.48	0.56	0.93	1.12	0.91	1.23	1.48
КА	3.82	6.70	1.31	1.32	2.36	2.70	2.40	3.20
КК	5 58	9 79	4 2.7	4 31	4 15	4 74	4 65	6 17

Таблица 2. Фосфор в целинных и агрогенных почвах Камчатки

Запасы доступного фосфора (кг/га) в естественных (ц) и агрогенных (п) почвах Камчатки в слое 0–20 см. A – Западно-Камчатская низменность, E – Центральная Камчатская депрессия, B – Восточно-Камчатская низменность, Γ – полуостров в целом

Несколько иная картина складывается при рассмотрении содержания в почвах доступного для растений фосфора и его запасов в корнеобитаемом слое (рисунок). Количество подвижного фосфора варьирует от среднего до очень высокого, наибольшие показатели (17.25 мг/100 г почвы в естественных и 36 мг — в пахотных) отмечены в почвах Восточно-Камчатской низменности. В почвах Западно-Камчатской низменности запасы доступного фосфора в природных и пахотных почвах близки, естественные почвы Центральной Камчатской депрессии намного богаче по содержанию фосфора, чем пахотные, а агрогенные почвы Восточно-Камчатской низменности по этому показателю, наоборот, значительно превосходят пелинные.

Таким образом, наилучшие условия для питания растений фосфором складываются в почвах западной и восточной частей полуострова. Несбалансированное внесение фосфорных удобрений привело к чрезмерному зафосфачиванию почв, что может способствовать явлению эфтрофикации и снижению качества природных вод.

ЛИТЕРАТУРА

Григорьев Н. А. 2009. Распределение химических элементов в верхней части континентальной коры. – Екатеринбург: УрО РАН. – 383 с.

Гринвуд Н., *Эрншо А.* 2008. Химия элементов. – М.: Бином. Т. 1. – 607 с.

Добровольский В. В. 2003. Основы биогеохимии. – М. : Изд. центр «Академия». – 400 с.

Зонн С. В., Карпачевский Л. О., Стефин В. В. 1963. Лесные почвы Камчатки. – М.: Изд-во АН СССР. – 255 с.

Карпачевский Л. О., Алябина И. О., Захарихина Л. В., Макеев А. О., Маречек М. С., Радюкин А. Ю., Шоба С. А., Таргульян В. О. 2009. Почвы Камчатки. – М. : Геос. – 224 с.

Кудеярова А. Ю. 2013. Направленность и механизмы трансформации природных сорбционных барьеров в кислых почвах при нагрузке фосфатами // Геохимия. № 4.-C.326-343.

Соколов И. А. 1973. Вулканизм и почвообразование. – М.: Наука. – 225 с.