Genetic diversity of nuclear ITS1-5.8S-ITS2 rDNA sequence in Clonorchis sinensis Cobbold, 1875 (Trematoda: Opisthorchidae) from the Russian Far East

Tatonova Y.V., Chelomina G.N., Besprosvannykh V.V.

В журнале Parasitology International

Год: 2012 Том: 61 Выпуск: 4 Страницы: 664-674

The present study examined the molecular organisation and sequence variation in the nuclear ribosomal DNA (rDNA) region, including the two internal transcribed spacers (ITS1 and ITS2) and the 5.8S gene of the Clonorchis sinensis from the Russian Far East. The relevant sequences from other parts of this species' area were downloaded from GenBank. The results showed 100% identity for all investigated 5.8S–ITS2 rDNA sequences. In contrast, two levels of intraspeci?c variations were revealed in the complete ITS1 sequences. The intra-genomic variation resulted from a C/T polymorphism in a single position. The inter-individual differences between the ITS1 sequences were both due to nucleotide and size polymorphisms resulting from a varying number of ?ve-nucleotide repeats and followed by two ITS1 length variants. These variant frequencies correlate with the clonorchiasis level in some geographical localities. ITS1 differ- ences, both in the mutation pro?le and mutation localisation, were revealed between northern and southern geographical samples. The presence of GC boxes that are identical to known regulatory motifs in eukaryotes was detected within the ITS1 sub-repeats. The predicted secondary structures for ITS1 consist of two large branches, one of which was invariable, while another depended on ITS1 length. The predicted secondary structure for ITS2 includes four helices around the core. The main differences between C. sinensis and other opisthorchids were localised on the tops of helices 2, 3, and 4. A phylogenetic MST reconstruction subdivided all ITS1 sequences into two well differentiated clusters, each with the major widespread ribotype, and showed that ribotype diversity in both Russia and Korea is much lower than in China. The results obtained demonstrate the feasibility of complete ITS1 sequences in C. sinensis population genetics and can be considered as a basis for further studies of the parasite infection because they may help to elucidate the molecular mechanisms of pathogen evolution and adaptation.

DOI 10.1016/j.parint.2012.07.005